2,581 research outputs found

    Measurement of Parity Violation in the Early Universe using Gravitational-wave Detectors

    Full text link
    A stochastic gravitational-wave background (SGWB) is expected to arise from the superposition of many independent and unresolved gravitational-wave signals, of either cosmological or astrophysical origin. Some cosmological models (characterized, for instance, by a pseudo-scalar inflaton, or by some modification of gravity) break parity, leading to a polarized SGWB. We present a new technique to measure this parity violation, which we then apply to the recent results from LIGO to produce the first upper limit on parity violation in the SGWB, assuming a generic power-law SGWB spectrum across the LIGO sensitive frequency region. We also estimate sensitivity to parity violation of the future generations of gravitational-wave detectors, both for a power-law spectrum and for a model of axion inflation. This technique offers a new way of differentiating between the cosmological and astrophysical sources of the isotropic SGWB, as astrophysical sources are not expected to produce a polarized SGWB.Comment: 5 pages, 2 figures, 1 tabl

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train
    • …
    corecore