24 research outputs found

    Once the shovel hits the ground : Evaluating the management of complex implementation processes of public-private partnership infrastructure projects with qualitative comparative analysis

    Get PDF
    Much attention is being paid to the planning of public-private partnership (PPP) infrastructure projects. The subsequent implementation phase – when the contract has been signed and the project ‘starts rolling’ – has received less attention. However, sound agreements and good intentions in project planning can easily fail in project implementation. Implementing PPP infrastructure projects is complex, but what does this complexity entail? How are projects managed, and how do public and private partners cooperate in implementation? What are effective management strategies to achieve satisfactory outcomes? This is the fi rst set of questions addressed in this thesis. Importantly, the complexity of PPP infrastructure development imposes requirements on the evaluation methods that can be applied for studying these questions. Evaluation methods that ignore complexity do not create a realistic understanding of PPP implementation processes, with the consequence that evaluations tell us little about what works and what does not, in which contexts, and why. This hampers learning from evaluations. What are the requirements for a complexity-informed evaluation method? And how does qualitative comparative analysis (QCA) meet these requirements? This is the second set of questions addressed in this thesis

    Differential cross-section measurements of the production of four charged leptons in association with two jets using the ATLAS detector

    Get PDF
    Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at √s = 13 TeV and with an integrated luminosity of 140 fb−1. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory

    Ic3D-klassifikation von hornhautdystrophien 1

    No full text
    Background: The recent availability of genetic analyses has demonstrated the shortcomings of the current phenotypic method of corneal dystrophy classification. Abnormalities in different genes can cause a single phenotype, whereas different defects in a single gene can cause different phenotypes. Some disorders termed corneal dystrophies do not appear to have a genetic basis. Purpose: The purpose of this study was to develop a new classification system for corneal dystrophies, integrating up-to-date information on phenotypic description, pathologic examination, and genetic analysis. Methods: The International Committee for Classification of Corneal Dystrophies (IC3D) was created to devise a current and accurate nomenclature. Results: This anatomic classification continues to organize dystrophies according to the level chiefly affected. Each dystrophy has a template summarizing genetic, clinical, and pathologic information. A category number from 1 through 4 is assigned, reflecting the level of evidence supporting the existence of a given dystrophy. The most defined dystrophies belong to category 1 (a welldefined corneal dystrophy in which a gene has been mapped and identified and specific mutations are known) and the least defined belong to category 4 (a suspected dystrophy where the clinical and genetic evidence is not yet convincing). The nomenclature may be updated over time as new information regarding the dystrophies becomes available. Conclusions: The IC3D Classification of Corneal Dystrophies is a new classification system that incorporates many aspects of the traditional definitions of corneal dystrophies with new genetic, clinical, and pathologic information. Standardized templates provide key information that includes a level of evidence for there being a corneal dystrophy. The system is user-friendly and upgradeable and can be retrieved on the website www.corneasociety.org/ic3d. Key Words: corneal dystrophy, inherited corneal disease, genetic corneal disease, corneal histopathology, gene, mutation, key reference, eponym, epithelial basement membrane dystrophy, epithelial recurrent erosion dystrophy, subepithelial mucinous corneal dystrophy, Meesmann corneal dystrophy, Lisch epithelial corneal dystrophy, gelatinous drop-like corneal dystrophy, Grayson-Wilbrandt corneal dystrophy, lattice corneal dystrophy, lattice gelsolin type dystrophy, granular corneal dystrophy 1, granular corneal dystrophy 2, Avellino corneal dystrophy, Reis-Bücklers corneal dystrophy, Thiel-Behnke corneal dystrophy, macular corneal dystrophy, Schnyder corneal dystrophy, Schnyder crystalline corneal dystrophy, congenital stromal corneal dystrophy, fleck corneal dystrophy, posterior amorphous corneal dystrophy, central cloudy dystrophy of Francxois, pre-Descemet corneal dystrophy, Fuchs endothelial corneal dystrophy, posterior polymorphous corneal dystrophy, congenital hereditary endothelial dystrophy 1, congenital hereditary endothelial dystrophy 2, X-linked endothelial corneal dystrophy. © Georg Thieme Verlag KG Stuttgart · New York
    corecore