40 research outputs found

    Oral l-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion

    Get PDF
    PurposeThe study investigated the effect of a non-thermal cooling agent, l-menthol, on exercise at a fixed subjective rating of perceived exertion (RPE) in a hot environment.MethodEight male participants completed two trials at an exercise intensity between ‘hard’ and ‘very hard’, equating to 16 on the RPE scale at ~35 °C. Participants were instructed to continually adjust their power output to maintain an RPE of 16 throughout the exercise trial, stopping once power output had fallen by 30%. In a randomized crossover design, either l-menthol or placebo mouthwash was administered prior to exercise and at 10 min intervals. Power output, VO2, heart rate, core and skin temperature was monitored, alongside thermal sensation and thermal comfort. Isokinetic peak power sprints were conducted prior to and immediately after the fixed RPE trial.ResultsExercise time was greater (23:23 ± 3:36 vs. 21:44 ± 2:32 min; P = 0.049) and average power output increased (173 ± 24 vs. 167 ± 24 W; P = 0.044) in the l-menthol condition. Peak isokinetic sprint power declined from pre-post trial in the l-menthol l (9.0%; P = 0.015) but not in the placebo condition (3.4%; P = 0.275). Thermal sensation was lower in the l-menthol condition (P = 0.036), despite no changes in skin or core temperature (P > 0.05).Conclusion These results indicate that a non-thermal cooling mouth rinse lowered thermal sensation, resulting in an elevated work rate, which extended exercise time in the heat at a fixed RPE

    Cerebral autoregulation across the menstrual cycle in eumenorrheic women

    No full text
    Abstract There is emerging evidence that ovarian hormones play a significant role in the lower stroke incidence observed in pre‐menopausal women compared with men. However, the role of ovarian hormones in cerebrovascular regulation remains to be elucidated. We examined the blood pressure‐cerebral blood flow relationship (cerebral autoregulation) across the menstrual cycle in eumenorrheic women (n = 12; mean ± SD: age, 31 ± 7 years). Participants completed sit‐to‐stand and Valsalva maneuvers (VM, mouth pressure of 40 mmHg for 15 s) during the early follicular (EF), late follicular (LF), and mid‐luteal (ML) menstrual cycle phases, confirmed by serum measurement of progesterone and 17β‐estradiol. Middle cerebral artery blood velocity (MCAv), arterial blood pressure and partial pressure of end‐tidal carbon dioxide were measured. Cerebral autoregulation was assessed by transfer function analysis during spontaneous blood pressure oscillations, rate of regulation (RoR) during sit‐to‐stand maneuvers, and Tieck’s autoregulatory index during VM phases II and IV (AI‐II and AI‐IV, respectively). Resting mean MCAv (MCAvmean), blood pressure, and cerebral autoregulation were unchanged across the menstrual cycle (all p > 0.12). RoR tended to be different (EF, 0.25 ± 0.06; LF; 0.19 ± 0.04; ML, 0.18 ± 0.12 sec−1; p = 0.07) and demonstrated a negative relationship with 17β‐estradiol (R2 = 0.26, p = 0.02). No changes in AI‐II (EF, 1.95 ± 1.20; LF, 1.67 ± 0.77 and ML, 1.20 ± 0.55) or AI‐IV (EF, 1.35 ± 0.21; LF, 1.27 ± 0.26 and ML, 1.20 ± 0.2) were observed (p = 0.25 and 0.37, respectively). Although, a significant interaction effect (p = 0.02) was observed for the VM MCAvmean response. These data indicate that the menstrual cycle has limited impact on cerebrovascular autoregulation, but individual differences should be considered

    Registration of ‘AC Alberta Pink’ Dry Bean

    No full text

    Registration of ‘AC Earlired’ Small Red Dry Bean

    No full text

    The effect of hypercapnia on static cerebral autoregulation

    No full text
    Hypercapnia impairs cerebrovascular control during rapid changes in blood pressure (BP); however, data concerning the effect of hypercapnia on steady state, nonpharmacological increases in BP is scarce. We recruited fifteen healthy volunteers (mean ± SD: age, 28 ± 6 years; body mass, 77 ± 12 kg) to assess the effect of hypercapnia on cerebrovascular control during steady‐state elevations in mean arterial BP (MAP), induced via lower body positive pressure (LBPP). Following 20 min of supine rest, participants completed 5 min of eucapnic 20 and 40 mm Hg LBPP (order randomized) followed by 5 min of hypercapnia (5% CO(2) in air) with and without LBPP (order randomized), and each stage was separated by ≥5 min to allow for recovery. Middle cerebral artery blood velocity (MCAv), BP, partial pressure of end‐tidal carbon dioxide (P(ET)CO(2)) and heart rate were recorded and presented as the change from the preceding baseline. No difference in MCAv was apparent between eupcapnic baseline and LBPPs (grouped mean 65 ± 11 cm·s(−1), all P >0.05), despite the increased MAP with LBPP (Δ6 ± 5 and Δ8 ± 3 mm Hg for 20 and 40 mm Hg, respectively, both P <0.001 vs. baseline). Conversely, MCAv during the hypercapnic +40 mm Hg stage (Δ31 ± 13 cm·s(−1)) was greater than hypercapnia alone (Δ25 ± 11 cm·s(−1), P =0.026), due to an increased MAP (Δ14 ± 7 mm Hg, P <0.001 vs. hypercapnia alone and P =0.026 vs. hypercapnia +20 mm Hg). As cardiac output and P(ET)CO(2) were similar across all hypercapnic stages (all P >0.05), our findings indicate that hypercapnia impairs static autoregulation, such that higher blood pressures are translated into the cerebral circulation

    PREEXERCISE URINE SPECIFIC GRAVITY AND FLUID INTAKE DURING ONE-HOUR RUNNING IN A THERMONEUTRAL ENVIRONMENT - A RANDOMIZED CROSS-OVER STUDY

    No full text
    Urine specific gravity is often used to assess hydration status. Athletes who are hypohydrated prior to exercise tend to ingest more fluid during the exercise, possibly to compensate for their pre exercise fluid deficit. The purpose of this study was to evaluate the effect of additional fluid intake on fluid balance and gastrointestinal tract comfort during 1h running in a thermoneutral environment when athletes followed their habitual fluid and dietary regimes. Sixteen men and sixteen women ingested a 6% carbohydrate-electrolyte solution immediately prior to exercise and then every 15 minutes during two runs, with a consumption rate of 2 mL.kg-1 (LV, lower volume) or 3 mL.kg-1 (HV, higher volume) body mass. Urine specific gravity and body mass changes were determined before and after the tests to estimate hydration status. During exercise subjects verbally responded to surveys inquiring about gastrointestinal symptoms, sensation of thirst and ratings of perceived exertion. Plasma glucose, heart rate and blood pressure were also evaluated. Men had higher preexercise urine specific gravity than women (1.025 vs. 1.016 g·mL-1 HV; and 1.024 vs. 1.017 g·mL-1 LV) and greater sweat loss (1.21 ± 0.27 L vs. 0.83 ± 0.21 L HV; and 1.18 ± 0.23 L vs. 0.77 ± 0.17 LV). Prevalence of gastrointestinal discomfort increased after 45 min. No significant differences on heart rate, rate of perceived exertion, blood pressure or glycemia was observed with the additional fluid intake. From these results it appears that additional fluid intake reduces body mass loss and thirst sensation. When compared to the men, however, preexercise euhydration was more common in women and an increased fluid intake increases the risk of body mass gain and gastrointestinal discomfor
    corecore