24 research outputs found

    Expression of Functional MHC Class II Molecules By a Mouse Pro-B Cell Clone

    Get PDF
    We describe here the G12 pro-B cell clone that has been isolated from an IL-7 transgenic mouse. This clone has the phenotype B220+, BP-1+ , HSA +, CD43+ λ5+ , and CD25-, and has its Ig locus in a germline configuration. G12 cells spontaneously express cell-surface MHC class II molecules, although to a much lesser extent than the mature M12.4.1 B-cell lymphoma. G12 cells can process and present the native Hen Egg Lysozyme (HEL) to an MHC class II-restricted T-cell hybridoma. The efficiency of presentation is inferior to that obtained with M12.4.1 cells. This is the first report where a pro-B cell can serve as APC in an MHC class II-restricted presentation

    Identification of novel SNPs of ABCD1, ABCD2, ABCD3, and ABCD4 genes in patients with X-linked adrenoleukodystrophy (ALD) based on comprehensive resequencing and association studies with ALD phenotypes

    Get PDF
    Adrenoleukodystrophy (ALD) is an X-linked disorder affecting primarily the white matter of the central nervous system occasionally accompanied by adrenal insufficiency. Despite the discovery of the causative gene, ABCD1, no clear genotype–phenotype correlations have been established. Association studies based on single nucleotide polymorphisms (SNPs) identified by comprehensive resequencing of genes related to ABCD1 may reveal genes modifying ALD phenotypes. We analyzed 40 Japanese patients with ALD. ABCD1 and ABCD2 were analyzed using a newly developed microarray-based resequencing system. ABCD3 and ABCD4 were analyzed by direct nucleotide sequence analysis. Replication studies were conducted on an independent French ALD cohort with extreme phenotypes. All the mutations of ABCD1 were identified, and there was no correlation between the genotypes and phenotypes of ALD. SNPs identified by the comprehensive resequencing of ABCD2, ABCD3, and ABCD4 were used for association studies. There were no significant associations between these SNPs and ALD phenotypes, except for the five SNPs of ABCD4, which are in complete disequilibrium in the Japanese population. These five SNPs were significantly less frequently represented in patients with adrenomyeloneuropathy (AMN) than in controls in the Japanese population (p = 0.0468), whereas there were no significant differences in patients with childhood cerebral ALD (CCALD). The replication study employing these five SNPs on an independent French ALD cohort, however, showed no significant associations with CCALD or pure AMN. This study showed that ABCD2, ABCD3, and ABCD4 are less likely the disease-modifying genes, necessitating further studies to identify genes modifying ALD phenotypes
    corecore