37 research outputs found

    Gasless balloon laparoscopy

    Get PDF
    The concept of balloon laparoscopy (B-LSC) pursues the simplification of conventional diagnostic laparoscopy (LSC). The pneumoperitoneum is replaced by a transparent balloon, which is positioned in front of the optical system. It shall be shown that with this arrangement diagnostic LSC can be performed outside of the operating room without requiring general anesthesia.An inflatable balloon was developed for a 30°/3.5-mm rod lens. Intra-abdominally the balloon was expanded to a diameter of 30 mm by air insufflation, and B-LSC was performed. Twelve patients were examined in general anesthesia before laparoscopic surgery. Twelve patients were subjected to B-LSC fully awake or with sedation (midazolam or propofol/S-ketamine) as a “second-look” procedure by way of a flexible trocar (port) left in the abdominal wall at the end of previous operation. Eight patients have been first provided with a trocar under sedation (midazolam or propofol/S-ketamine) combined with local anesthesia, and B-LSC was performed before laparoscopic surgery.On a scale of 1–5, the general impression was rated 1.9, the navigability to the different abdominal organs 2.5, the resolution 1.5, the stability of the system optic/trocar 2.1, the suitability of the balloon format 1.9, and the stability of the balloon against lateral shear forces 2.4. The degree of painfulness of the examination was rated 2.8, the tolerance of the port 1.4, and the degree of painfulness of trocar placement at 2.5. On a scale of 1 to 3, the strain of the abdominal musculature was rated 1.4 and the obstruction by adhesions 1.7.B-LSC is technically practicable with good imaging qualities and without requiring pneumoperitoneum. It is tolerated in great extent under slight sedation and particularly well under deep sedation. The procedure is suitable for diagnostics of unclear abdominal conditions, as a second-look LSC and also as a staging LSC

    Comparative Assessment of Status and Opportunities for Carbon Dioxide Capture and Storage and Radioactive Waste Disposal in North America

    Full text link
    Aside from the target storage regions being underground, geologic carbon sequestration (GCS) and radioactive waste disposal (RWD) share little in common in North America. The large volume of carbon dioxide (CO{sub 2}) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste (RW). There is well-documented capacity in North America for 100 years or more of sequestration of CO{sub 2} from coal-fired power plants. Aside from economics, the challenges of GCS include lack of fully established legal and regulatory framework for ownership of injected CO{sub 2}, the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for RW, the USA had proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level RWD site before removing it from consideration in early 2009. The Canadian RW program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the USA and Canada have established legal and regulatory frameworks for RWD. The most challenging technical issue for RWD is the need to predict repository performance on extremely long time scales (10{sup 4}-10{sup 6} years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening RW repositories. Because of the many significant differences between RWD and GCS, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both GCS and RWD as they learn more about the urgent energy-climate crisis created by greenhouse gas emissions from current fossil-fuel combustion practices

    HMM Assessment of Quality of Movement Trajectory in Laparoscopic Surgery

    No full text
    Abstract. Laparoscopic surgery poses many different constraints to the operating surgeon, this has resulted in a slow uptake of advanced laparoscopic procedures. Traditional approaches to the assessment of surgical performance rely on prior classification of a cohort of surgeons ’ technical skills for validation, which may introduce subjective bias to the outcome. In this study, Hidden Markov Models (HMMs) are used to learn surgical maneuvers from 11 subjects with mixed abilities. By using the leave-one-out method, the HMMs are trained without prior clustering subjects into different skills levels, and the output likelihood indicates the similarity of a particular subject’s motion trajectories to the group. The experimental results demonstrate the strength of the method in ranking the quality of trajectories of the subjects, highlighting its value in minimizing the subjective bias in skills assessment for minimally invasive surgery.
    corecore