49 research outputs found

    Photoreversal of the ultraviolet radiation-induced disappearance of ATPase-positive Langerhans cells in the epidermis of Monodelphis domestica

    No full text
    The present study was undertaken to explore the possible causes of ultraviolet radiation (UVR)-induced disappearance of ATPase-positive, epidermal Langerhans cells (LC). Monodelphis domestica was used because it has the capacity for photoreactivation of UVR-induced pyrimidine dimers in epidermal DNA. Single, 330 J/m2 (ears) or 500 J/m2 (back) UVR exposures (FS-40 sunlamps) reduced the numbers of ATPase-positive epidermal LC in M. domestica ears to approximately 15% of those in unirradiated ears and approximately 37% of those in unirradiated dorsal skin. Immediate 90-minute exposures to photoreactivating light (PRL, 320-400 nm) post-UVR reversed the effects of UVR, resulting in ATPase-positive LC numbers not being significantly different from controls. Exposure to PRL immediately preceeding UVR did not prevent ATPase-positive LC disappearance. The photoreactivation of UVR-induced ATPase-positive LC disappearance indicates that DNA damage (pyrimidine dimers) is involved in the loss of ATPase-positive L

    Microencapsulated human bone marrow cultures: A potential culture system for the clonal outgrowth of hematopoietic progenitor cells

    Full text link
    Currently the most successful methods for culturing human hematopoietic cells employ some form of perfused bioreactor system. However, these systems do not permit the clonal outgrowth of single progenitor cells. Therefore, we have investigated the use of alginate–poly- L -lysine microencapsulation of human bone marrow, combined with rapid medium exchange, as a system that may overcome this limitation for the purpose of studying the kinetics of progenitor cell growth. We report that a 12 to 24-fold multilineage expansion of adult human bone marow cells was achieved in about 16 to 19 days with this system and that visually identifiable colonies within the capsules were responsible for the increase in cell number. The colonies that represented the majority of cell growth originated from cells that appeared to be present in a frequency of about 1 in 4000 in the encapsulated cell population. These colonies were predominantly granulocytic and contained greater than 40,000 cells each. Large erythroid colonies were also present in the capsules, and they often contained over 10,000 cells each. Time profiles of the erythroid progenitor cell density over time were obtained. Burst-forming units erythroid (BFU-E) peaked around day 5, and the number of morphologically identifiable erythroid cells (erythroblasts through reticulocytes) peaked on day 12. We also report the existence of a critical inoculum density and how growth was improved with the use of conditioned medium derived from a microcapsule culture initiated above the critical inoculum density. Taken together, these results suggest that microencapsulation of human hematopoietic cells allows for outgrowth of progenitor, and possible preprogenitor, cells and could serve as a novel culture system for monitoring the growth and differentiation kinetics of these cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/37929/1/260430807_ftp.pd
    corecore