275 research outputs found
Dependence of ground state energy of classical n-vector spins on n
We study the ground state energy E_G(n) of N classical n-vector spins with
the hamiltonian H = - \sum_{i>j} J_ij S_i.S_j where S_i and S_j are n-vectors
and the coupling constants J_ij are arbitrary. We prove that E_G(n) is
independent of n for all n > n_{max}(N) = floor((sqrt(8N+1)-1) / 2) . We show
that this bound is the best possible. We also derive an upper bound for E_G(m)
in terms of E_G(n), for m<n. We obtain an upper bound on the frustration in the
system, as measured by F(n), which is defined to be (\sum_{i>j} |J_ij| +
E_G(n)) / (\sum_{i>j} |J_ij|). We describe a procedure for constructing a set
of J_ij's such that an arbitrary given state, {S_i}, is the ground state.Comment: 6 pages, 2 figures, submitted to Physical Review
Relative Comparison Kernel Learning with Auxiliary Kernels
In this work we consider the problem of learning a positive semidefinite
kernel matrix from relative comparisons of the form: "object A is more similar
to object B than it is to C", where comparisons are given by humans. Existing
solutions to this problem assume many comparisons are provided to learn a high
quality kernel. However, this can be considered unrealistic for many real-world
tasks since relative assessments require human input, which is often costly or
difficult to obtain. Because of this, only a limited number of these
comparisons may be provided. In this work, we explore methods for aiding the
process of learning a kernel with the help of auxiliary kernels built from more
easily extractable information regarding the relationships among objects. We
propose a new kernel learning approach in which the target kernel is defined as
a conic combination of auxiliary kernels and a kernel whose elements are
learned directly. We formulate a convex optimization to solve for this target
kernel that adds only minor overhead to methods that use no auxiliary
information. Empirical results show that in the presence of few training
relative comparisons, our method can learn kernels that generalize to more
out-of-sample comparisons than methods that do not utilize auxiliary
information, as well as similar methods that learn metrics over objects
Theory and Applications of Robust Optimization
In this paper we survey the primary research, both theoretical and applied,
in the area of Robust Optimization (RO). Our focus is on the computational
attractiveness of RO approaches, as well as the modeling power and broad
applicability of the methodology. In addition to surveying prominent
theoretical results of RO, we also present some recent results linking RO to
adaptable models for multi-stage decision-making problems. Finally, we
highlight applications of RO across a wide spectrum of domains, including
finance, statistics, learning, and various areas of engineering.Comment: 50 page
Forecasting and Granger Modelling with Non-linear Dynamical Dependencies
Traditional linear methods for forecasting multivariate time series are not
able to satisfactorily model the non-linear dependencies that may exist in
non-Gaussian series. We build on the theory of learning vector-valued functions
in the reproducing kernel Hilbert space and develop a method for learning
prediction functions that accommodate such non-linearities. The method not only
learns the predictive function but also the matrix-valued kernel underlying the
function search space directly from the data. Our approach is based on learning
multiple matrix-valued kernels, each of those composed of a set of input
kernels and a set of output kernels learned in the cone of positive
semi-definite matrices. In addition to superior predictive performance in the
presence of strong non-linearities, our method also recovers the hidden dynamic
relationships between the series and thus is a new alternative to existing
graphical Granger techniques.Comment: Accepted for ECML-PKDD 201
- …