2,708 research outputs found

    Tests for circular symmetry of complex-valued random vectors

    Full text link
    We propose tests for the null hypothesis that the law of a complex-valued random vector is circularly symmetric. The test criteria are formulated as L2L^2-type criteria based on empirical characteristic functions, and they are convenient from the computational point of view. Asymptotic as well as Monte-Carlo results are presented. Applications on real data are also reported. An R package called CircSymTest is available from the authors

    Formalizing the transformations of a cognitive universe

    Get PDF
    International audienceIn an effort to continue the pioneering work of Harary in USA and Flament in France, we have undertaken to develop, on an experimental basis, a formalized theory of systems of beliefs and their modifications. This theory uses the psycho-social concepts of theories of cognitive consistency and of the tools of discrete mathematics, such as rewriting and intervals within graphs. The axioms and rewriting rules are elaborated from experimental data, and we demonstrate that the system we have built has the property of termination. This result is in accordance with experimental observations that show that every subject having an inconsistent system of beliefs (i.e., one containing contradictions) makes this system evolve towards consistency to reach a simple, consistent reference framework

    LHC/ILC Interplay in SUSY Searches

    Full text link
    Combined analyses at the Large Hadron Collider and at the International Linear Collider are important to reveal precisely the new physics model as, for instance, supersymmetry. Examples are presented where ILC results as input for LHC analyses could be crucial for the identification of signals as well as of the underlying model. The synergy of both colliders leads also to rather accurate SUSY parameter determination and powerful mass constraints even if the scalar particles have masses in the multi-TeV range.Comment: 5 pages, contribution to the proceedings of EPS0

    Model-Independent Bounds on a Light Higgs

    Get PDF
    We present up-to-date constraints on a generic Higgs parameter space. An accurate assessment of these exclusions must take into account statistical, and potentially signal, fluctuations in the data currently taken at the LHC. For this, we have constructed a straightforward statistical method for making full use of the data that is publicly available. We show that, using the expected and observed exclusions which are quoted for each search channel, we can fully reconstruct likelihood profiles under very reasonable and simple assumptions. Even working with this somewhat limited information, we show that our method is sufficiently accurate to warrant its study and advocate its use over more naive prescriptions. Using this method, we can begin to narrow in on the remaining viable parameter space for a Higgs-like scalar state, and to ascertain the nature of any hints of new physics---Higgs or otherwise---appearing in the data.Comment: 32 pages, 10 figures; v3: correction made to basis of four-derivative operators in the effective Lagrangian, references adde

    Measuring the Higgs Sector

    Full text link
    If we find a light Higgs boson at the LHC, there should be many observable channels which we can exploit to measure the relevant parameters in the Higgs sector. We use the SFitter framework to map these measurements on the parameter space of a general weak-scale effective theory with a light Higgs state of mass 120 GeV. Our analysis benefits from the parameter determination tools and the error treatment used in new--physics searches, to study individual parameters and their error bars as well as parameter correlations.Comment: 45 pages, Journal version with comments from refere

    Dark matter searches at LHC

    Full text link
    Besides Standard Model measurements and other Beyond Standard Model studies, the ATLAS and CMS experiments at the LHC will search for Supersymmetry, one of the most attractive explanation for dark matter. The SUSY discovery potential with early data is presented here together with some first results obtained with 2010 collision data at 7 TeV. Emphasis is placed on measurements and parameter determination that can be performed to disentangle the possible SUSY models and SUSY look-alike and the interpretation of a possible positive supersymmetric signal as an explanation of dark matter.Comment: 15 pages, 14 figures, Invited plenary talk given at DISCRETE 2010: Symposium On Prospects In The Physics Of Discrete Symmetries, 6-11 Dec 2010, Rome, Ital

    Determining R-parity violating parameters from neutrino and LHC data

    Full text link
    In supersymmetric models neutrino data can be explained by R-parity violating operators which violate lepton number by one unit. The so called bilinear model can account for the observed neutrino data and predicts at the same time several decay properties of the lightest supersymmetric particle. In this paper we discuss the expected precision to determine these parameters by combining neutrino and LHC data and discuss the most important observables. We show that one can expect a rather accurate determination of the underlying R-parity parameters assuming mSUGRA relations between the R-parity conserving ones and discuss briefly also the general MSSM as well as the expected accuracies in case of a prospective e+ e- linear collider. An important observation is that several parameters can only be determined up to relative signs or more generally relative phases.Comment: 13 pages, 13 figure

    Full order alpha electroweak corrections to double Higgs-strahlung at the linear collider

    Full text link
    We present the full order alpha electroweak radiative corrections to the double Higgs-strahlung process e+e- --> ZHH. The computation is performed with the help of GRACE-loop. After subtraction of the initial state QED radiative corrections, we find that the genuine weak corrections in the α\alpha-scheme are small for Higgs masses and energies where this cross section is largest and is most likely to be studied. These corrections decrease with increasing energies attaining about ∌−10\sim -10% at s=1.5\sqrt{s}=1.5TeV. The full order alpha correction on the other hand is quite large at threshold but small at energies around the peak. We also study changes in the shape of the invariant mass of the Higgs pair which has been shown to be a good discriminating variable for the measurement of the triple Higgs vertex in this reaction.Comment: 18 pages, 5 figures and 3 table
    • 

    corecore