5,506 research outputs found
Apparatus to control and visualize the impact of a high-energy laser pulse on a liquid target
We present an experimental apparatus to control and visualize the response of
a liquid target to a laser-induced vaporization. We use a millimeter-sized drop
as target and present two liquid-dye solutions that allow a variation of the
absorption coefficient of the laser light in the drop by seven orders of
magnitude. The excitation source is a Q-switched Nd:YAG laser at its
frequency-doubled wavelength emitting nanosecond pulses with energy densities
above the local vaporization threshold. The absorption of the laser energy
leads to a large-scale liquid motion at timescales that are separated by
several orders of magnitude, which we spatiotemporally resolve by a combination
of ultra-high-speed and stroboscopic high-resolution imaging in two orthogonal
views. Surprisingly, the large-scale liquid motion at upon laser impact is
completely controlled by the spatial energy distribution obtained by a precise
beam-shaping technique. The apparatus demonstrates the potential for accurate
and quantitative studies of laser-matter interactions.Comment: Submitted to Review of Scientific Instrument
Exploring the phase space of multiple states in highly turbulent Taylor-Couette flow
We investigate the existence of multiple turbulent states in highly turbulent
Taylor-Couette flow in the range of to ,
by measuring the global torques and the local velocities while probing the
phase space spanned by the rotation rates of the inner and outer cylinder. The
multiple states are found to be very robust and are expected to persist beyond
. The rotation ratio is the parameter that most strongly
controls the transitions between the flow states; the transitional values only
weakly depend on the Taylor number. However, complex paths in the phase space
are necessary to unlock the full region of multiple states. Lastly, by mapping
the flow structures for various rotation ratios in a Taylor-Couette setup with
an equal radius ratio but a larger aspect ratio than before, multiple states
were again observed. Here, they are characterized by even richer roll structure
phenomena, including, for the first time observed in highly turbulent TC flow,
an antisymmetrical roll state.Comment: 9 pages, 7 figure
Nanometer-Resolved Collective Micromeniscus Oscillations through Optical Diffraction
We study the dynamics of periodic arrays of micrometer-sized liquid-gas
menisci formed at superhydrophobic surfaces immersed into water. By measuring
the intensity of optical diffraction peaks in real time we are able to resolve
nanometer scale oscillations of the menisci with sub-microsecond time
resolution. Upon driving the system with an ultrasound field at variable
frequency we observe a pronounced resonance at a few hundred kHz, depending on
the exact geometry. Modeling the system using the unsteady Stokes equation, we
find that this low resonance frequency is caused by a collective mode of the
acoustically coupled oscillating menisci.Comment: 4 pages, 5 figure
Periodically kicked turbulence
Periodically kicked turbulence is theoretically analyzed within a mean field
theory. For large enough kicking strength A and kicking frequency f the
Reynolds number grows exponentially and then runs into some saturation. The
saturation level can be calculated analytically; different regimes can be
observed. For large enough Re we find the saturation level to be proportional
to A*f, but intermittency can modify this scaling law. We suggest an
experimental realization of periodically kicked turbulence to study the
different regimes we theoretically predict and thus to better understand the
effect of forcing on fully developed turbulence.Comment: 4 pages, 3 figures. Phys. Rev. E., in pres
Spontaneous Breakdown of Superhydrophobicity
In some cases water droplets can completely wet micro-structured
superhydrophobic surfaces. The {\it dynamics} of this rapid process is analyzed
by ultra-high-speed imaging. Depending on the scales of the micro-structure,
the wetting fronts propagate smoothly and circularly or -- more interestingly
-- in a {\it stepwise} manner, leading to a growing {\it square-shaped} wetted
area: entering a new row perpendicular to the direction of front propagation
takes milliseconds, whereas once this has happened, the row itself fills in
microseconds ({\it ``zipping''})Comment: Accepted for publication in Physical Review Letter
Fully developed turbulence and the multifractal conjecture
We review the Parisi-Frisch MultiFractal formalism for
Navier--Stokes turbulence with particular emphasis on the issue of
statistical fluctuations of the dissipative scale. We do it for both Eulerian
and Lagrangian Turbulence. We also show new results concerning the application
of the formalism to the case of Shell Models for turbulence. The latter case
will allow us to discuss the issue of Reynolds number dependence and the role
played by vorticity and vortex filaments in real turbulent flows.Comment: Special Issue dedicated to E. Brezin and G. Paris
Sudden Collapse of a Granular Cluster
Single clusters in a vibro-fluidized granular gas in N connected compartments
become unstable at strong shaking. They are experimentally shown to collapse
very abruptly. The observed cluster lifetime (as a function of the driving
intensity) is analytically calculated within a flux model, making use of the
self-similarity of the process. After collapse, the cluster diffuses out into
the uniform distribution in a self-similar way, with an anomalous diffusion
exponent 1/3.Comment: 4 pages, 4 figures. Figure quality has been reduced in order to
decrease file-siz
GPCR-OKB: the G protein coupled receptor oligomer knowledge base
Rapid expansion of available data about G Protein Coupled Receptor (GPCR) dimers/oligomers over the past few years requires an effective system to organize this information electronically. Based on an ontology derived from a community dialog involving colleagues using experimental and computational methodologies, we developed the GPCR-Oligomerization Knowledge Base (GPCR-OKB). GPCR-OKB is a system that supports browsing and searching for GPCR oligomer data. Such data were manually derived from the literature. While focused on GPCR oligomers, GPCR-OKB is seamlessly connected to GPCRDB, facilitating the correlation of information about GPCR protomers and oligomers
Exploring 4D Quantum Hall Physics with a 2D Topological Charge Pump
The discovery of topological states of matter has profoundly augmented our
understanding of phase transitions in physical systems. Instead of local order
parameters, topological phases are described by global topological invariants
and are therefore robust against perturbations. A prominent example thereof is
the two-dimensional integer quantum Hall effect. It is characterized by the
first Chern number which manifests in the quantized Hall response induced by an
external electric field. Generalizing the quantum Hall effect to
four-dimensional systems leads to the appearance of a novel non-linear Hall
response that is quantized as well, but described by a 4D topological invariant
- the second Chern number. Here, we report on the first observation of a bulk
response with intrinsic 4D topology and the measurement of the associated
second Chern number. By implementing a 2D topological charge pump with
ultracold bosonic atoms in an angled optical superlattice, we realize a
dynamical version of the 4D integer quantum Hall effect. Using a small atom
cloud as a local probe, we fully characterize the non-linear response of the
system by in-situ imaging and site-resolved band mapping. Our findings pave the
way to experimentally probe higher-dimensional quantum Hall systems, where new
topological phases with exotic excitations are predicted
Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point
As shown in earlier work (Ahlers et al., J. Fluid Mech. 569, p.409 (2006)),
non-Oberbeck Boussinesq (NOB) corrections to the center temperature in
turbulent Rayleigh-Benard convection in water and also in glycerol are governed
by the temperature dependences of the kinematic viscosity and the thermal
diffusion coefficient. If the working fluid is ethane close to the critical
point the origin of non-Oberbeck-Boussinesq corrections is very different, as
will be shown in the present paper. Namely, the main origin of NOB corrections
then lies in the strong temperature dependence of the isobaric thermal
expansion coefficient \beta(T). More precisely, it is the nonlinear
T-dependence of the density \rho(T) in the buoyancy force which causes another
type of NOB effect. We demonstrate that through a combination of experimental,
numerical, and theoretical work, the latter in the framework of the extended
Prandtl-Blasius boundary layer theory developed in Ahlers et al., J. Fluid
Mech. 569, p.409 (2006). The latter comes to its limits, if the temperature
dependence of the thermal expension coefficient \beta(T) is significant.Comment: 18 pages, 15 figures, 3 table
- …