9,778 research outputs found
Comparison of LISA and Atom Interferometry for Gravitational Wave Astronomy in Space
One of the atom interferometer gravitational wave missions proposed by
Dimopoulos et al.1 in 2008 was called AGIS-Sat. 2. It had a suggested
gravitational wave sensitivity set by the atom state detection shot noise level
that started at 1 mHz, was comparable to LISA sensitivity from 1 to about 20
mHz, and had better sensitivity from 20 to 500 mHz. The separation between the
spacecraft was 1,000 km, with atom interferometers 200 m long and shades from
sunlight used at each end. A careful analysis of many error sources was
included, but requirements on the time-stability of both the laser wavefront
aberrations and the atom temperatures in the atom clouds were not investigated.
After including these considerations, the laser wavefront aberration stability
requirement to meet the quoted sensitivity level is about 1\times10-8
wavelengths, and is far tighter than for LISA. Also, the temperature
fluctuations between atom clouds have to be less than 1 pK. An alternate atom
interferometer GW mission in Earth orbit called AGIS-LEO with 30 km satellite
separation has been suggested recently. The reduction of wavefront aberration
noise by sending the laser beam through a high-finesse mode-scrubbing optical
cavity is discussed briefly, but the requirements on such a cavity are not
given. Unfortunately, such an Earth-orbiting mission seems to be considerably
more difficult to design than a non-geocentric mission and does not appear to
have comparably attractive scientific goals.Comment: Submitted to Proc. 46th Rencontres de Moriond: Gravitational Waves
and Experimental Gravity, March 20 - 27, 2011, La Thuile, Ital
Pseudohermitian Hamiltonians, time-reversal invariance and Kramers degeneracy
A necessary and sufficient condition in order that a (diagonalizable)
pseudohermitian operator admits an antilinear symmetry T such that T^{2}=-1 is
proven. This result can be used as a quick test on the T-invariance properties
of pseudohermitian Hamiltonians, and such test is indeed applied, as an
example, to the Mashhoon-Papini Hamiltonian.Comment: 6 page
Prospects for direct detection of circular polarization of gravitational-wave background
We discussed prospects for directly detecting circular polarization signal of
gravitational wave background. We found it is generally difficult to probe the
monopole mode of the signal due to broad directivity of gravitational wave
detectors. But the dipole (l=1) and octupole (l=3) modes of the signal can be
measured in a simple manner by combining outputs of two unaligned detectors,
and we can dig them deeply under confusion and detector noises. Around f~0.1mHz
LISA will provide ideal data streams to detect these anisotropic components
whose magnitudes are as small as ~1 percent of the detector noise level in
terms of the non-dimensional energy density \Omega_{GW}(f).Comment: 5 pages, 1 figure, PRL in pres
The GL 569 Multiple System
We report the results of high spectral and angular resolution infrared
observations of the multiple system GL 569 A and B that were intended to
measure the dynamical masses of the brown dwarf binary believed to comprise GL
569 B. Our analysis did not yield this result but, instead, revealed two
surprises. First, at age ~100 Myr, the system is younger than had been reported
earlier. Second, our spectroscopic and photometric results provide support for
earlier indications that GL 569 B is actually a hierarchical brown dwarf triple
rather than a binary. Our results suggest that the three components of GL 569 B
have roughly equal mass, ~0.04 Msun.Comment: 29 pages, 10 figures, accepted for publication in the Astrophysical
Journal; minor corrections to Section 5.1; changed typo in 6.
Harmonic oscillator well with a screened Coulombic core is quasi-exactly solvable
In the quantization scheme which weakens the hermiticity of a Hamiltonian to
its mere PT invariance the superposition V(x) = x^2+ Ze^2/x of the harmonic and
Coulomb potentials is defined at the purely imaginary effective charges
(Ze^2=if) and regularized by a purely imaginary shift of x. This model is
quasi-exactly solvable: We show that at each excited, (N+1)-st
harmonic-oscillator energy E=2N+3 there exists not only the well known harmonic
oscillator bound state (at the vanishing charge f=0) but also a normalizable
(N+1)-plet of the further elementary Sturmian eigenstates \psi_n(x) at
eigencharges f=f_n > 0, n = 0, 1, ..., N. Beyond the first few smallest
multiplicities N we recommend their perturbative construction.Comment: 13 pages, Latex file, to appear in J. Phys. A: Math. Ge
On the pseudo-Hermitian nondiagonalizable Hamiltonians
We consider a class of (possibly nondiagonalizable) pseudo-Hermitian
operators with discrete spectrum, showing that in no case (unless they are
diagonalizable and have a real spectrum) they are Hermitian with respect to a
semidefinite inner product, and that the pseudo-Hermiticity property is
equivalent to the existence of an antilinear involutory symmetry. Moreover, we
show that a typical degeneracy of the real eigenvalues (which reduces to the
well known Kramers degeneracy in the Hermitian case) occurs whenever a
fermionic (possibly nondiagonalizable) pseudo-Hermitian Hamiltonian admits an
antilinear symmetry like the time-reversal operator . Some consequences and
applications are briefly discussed.Comment: 22 page
Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory ?
The Multi-Reference Energy Density Functional (MR-EDF) approach (also called
configuration mixing or Generator Coordinate Method), that is commonly used to
treat pairing in finite nuclei and project onto particle number, is
re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can
be interpreted as a functional of the one-body density matrix of the projected
state with good particle number. Based on this observation, we propose a new
approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and
restoration of symmetry are accounted for simultaneously. We show, that such an
approach is free from pathologies recently observed in MR-EDF and can be used
with a large flexibility on the density dependence of the functional.Comment: proceeding of the conference "Many body correlations from dilute to
dense Nuclear systems", Paris, February 201
Improved initial data for black hole binaries by asymptotic matching of post-Newtonian and perturbed black hole solutions
We construct approximate initial data for non-spinning black hole binary
systems by asymptotically matching the 4-metrics of two tidally perturbed
Schwarzschild solutions in isotropic coordinates to a resummed post-Newtonian
4-metric in ADMTT coordinates. The specific matching procedure used here
closely follows the calculation in gr-qc/0503011, and is performed in the so
called buffer zone where both the post-Newtonian and the perturbed
Schwarzschild approximations hold. The result is that both metrics agree in the
buffer zone, up to the errors in the approximations. However, since isotropic
coordinates are very similar to ADMTT coordinates, matching yields better
results than in the previous calculation, where harmonic coordinates were used
for the post-Newtonian 4-metric. In particular, not only does matching improve
in the buffer zone, but due to the similarity between ADMTT and isotropic
coordinates the two metrics are also close to each other near the black hole
horizons. With the help of a transition function we also obtain a global smooth
4-metric which has errors on the order of the error introduced by the more
accurate of the two approximations we match. This global smoothed out 4-metric
is obtained in ADMTT coordinates which are not horizon penetrating. In
addition, we construct a further coordinate transformation that takes the
4-metric from global ADMTT coordinates to new coordinates which are similar to
Kerr-Schild coordinates near each black hole, but which remain ADMTT further
away from the black holes. These new coordinates are horizon penetrating and
lead, for example, to a lapse which is everywhere positive on the t=0 slice.
Such coordinates may be more useful in numerical simulations.Comment: 25 pages, 21 figures. Replaced with accepted versio
A photometric and kinematic study of the stars and interstellar medium in the central two kpc of NGC 3379
HST images of NGC 3379 show that the V and I luminosity profiles in the inner
13 arcsec of this E1 galaxy are represented by two different components: a
stellar bulge following a Sersic Law with exponent n = 2.36, and a central core
(r < 0.7 arcsec) with a characteristic "cuspy" profile. Subtraction of the
underlying stellar component represented by the fitted Sersic profile revealed
the presence of a small (r ~ 105 pc) dust disk of about 150 solar masses,
oriented at PA = 125 degrees and inclined ~ 77 degrees with respect to the line
of sight. The same absorption structure is detected in the color-index (V-I)
image. The stellar rotation in the inner 20 arcsec is well represented by a
parametric planar disk model, inclined ~ 26 degrees relative to the plane of
the sky, and apparent major axis along PA ~ 67 degrees. The gas velocity curves
in the inner 5 arcsec show a steep gradient, indicating that the gas rotates
much faster than the stars, although in the same direction. The velocity field
of the gaseous system, however, is not consistent with the simple model of
Keplerian rotation sustained by the large (7 x 10E9 solar masses within a
radius of ~ 90 pc) central mass implied by the maximum velocity observed, but
the available data precludes a more detailed analysis.Comment: 23 pages, LaTeX(aaspp4.sty), 9 figures included. Figs. 1 and 5 are
colour plates. Accepted for publication in The Astrophysical Journal (part 1
Global study of quadrupole correlation effects
We discuss the systematics of ground-state quadrupole correlations of binding
energies and mean-square charge radii for all even-even nuclei, from O16 up to
the superheavies, for which data are available. To that aim we calculate their
correlated J=0 ground state by means of the angular-momentum and
particle-number projected generator coordinate method, using the axial mass
quadrupole moment as the generator coordinate and self-consistent mean-field
states only restricted by axial, parity, and time-reversal symmetries. The
calculation is performed within the framework of a non-relativistic
self-consistent mean-field model using the same non-relativistic Skyrme
interaction SLy4 and a density-dependent pairing force to generate the
mean-field configurations and mix them. (See the paper for the rest of the
abstract).Comment: 28 pages revtex, 29 eps figures (2 of which in color), 10 tables.
submitted to Phys. Rev.
- âŠ