1,029 research outputs found
Pressure dependence of the superconducting transition and electron correlations in Na_xCoO_2 \cdot 1.3H_2O
We report T_c and ^{59}Co nuclear quadrupole resonance (NQR) measurements on
the cobalt oxide superconductor Na_{x}CoO_{2}\cdot 1.3H_{2}O (T_c=4.8 K) under
hydrostatic pressure (P) up to 2.36 GPa. T_c decreases with increasing pressure
at an average rate of -0.49\pm0.09 K/GPa. At low pressures P\leq0.49 GPa, the
decrease of T_c is accompanied by a weakening of the spin correlations at a
finite wave vector and a reduction of the density of states (DOS) at the Fermi
level. At high pressures above 1.93 GPa, however, the decrease of T_c is mainly
due to a reduction of the DOS. These results indicate that the
electronic/magnetic state of Co is primarily responsible for the
superconductivity. The spin-lattice relaxation rate 1/T_1 at P=0.49 GPa shows a
T^3 variation below T_c down to T\sim 0.12T_c, which provides compelling
evidence for the presence of line nodes in the superconducting gap function.Comment: published on 19, Sept. 2007 on Phys. Rev.
Comparison of manual and semi-automated delineation of regions of interest for radioligand PET imaging analysis
BACKGROUND
As imaging centers produce higher resolution research scans, the number of man-hours required to process regional data has become a major concern. Comparison of automated vs. manual methodology has not been reported for functional imaging. We explored validation of using automation to delineate regions of interest on positron emission tomography (PET) scans. The purpose of this study was to ascertain improvements in image processing time and reproducibility of a semi-automated brain region extraction (SABRE) method over manual delineation of regions of interest (ROIs).
METHODS
We compared 2 sets of partial volume corrected serotonin 1a receptor binding potentials (BPs) resulting from manual vs. semi-automated methods. BPs were obtained from subjects meeting consensus criteria for frontotemporal degeneration and from age- and gender-matched healthy controls. Two trained raters provided each set of data to conduct comparisons of inter-rater mean image processing time, rank order of BPs for 9 PET scans, intra- and inter-rater intraclass correlation coefficients (ICC), repeatability coefficients (RC), percentages of the average parameter value (RM%), and effect sizes of either method.
RESULTS
SABRE saved approximately 3 hours of processing time per PET subject over manual delineation (p 0.8) for both methods. RC and RM% were lower for the manual method across all ROIs, indicating less intra-rater variance across PET subjects' BPs.
CONCLUSION
SABRE demonstrated significant time savings and no significant difference in reproducibility over manual methods, justifying the use of SABRE in serotonin 1a receptor radioligand PET imaging analysis. This implies that semi-automated ROI delineation is a valid methodology for future PET imaging analysis
Estimating Electric Fields from Vector Magnetogram Sequences
Determining the electric field (E-field) distribution on the Sun's
photosphere is essential for quantitative studies of how energy flows from the
Sun's photosphere, through the corona, and into the heliosphere. This E-field
also provides valuable input for data-driven models of the solar atmosphere and
the Sun-Earth system. We show how Faraday's Law can be used with observed
vector magnetogram time series to estimate the photospheric E-field, an
ill-posed inversion problem. Our method uses a "poloidal-toroidal
decomposition" (PTD) of the time derivative of the vector magnetic field. The
PTD solutions are not unique; the gradient of a scalar potential can be added
to the PTD E-field without affecting consistency with Faraday's Law. We present
an iterative technique to determine a potential function consistent with ideal
MHD evolution; but this E-field is also not a unique solution to Faraday's Law.
Finally, we explore a variational approach that minimizes an energy functional
to determine a unique E-field, similar to Longcope's "Minimum Energy Fit". The
PTD technique, the iterative technique, and the variational technique are used
to estimate E-fields from a pair of synthetic vector magnetograms taken from an
MHD simulation; and these E-fields are compared with the simulation's known
electric fields. These three techniques are then applied to a pair of vector
magnetograms of solar active region NOAA AR8210, to demonstrate the methods
with real data.Comment: 41 pages, 10 figure
A Plasma {\beta} Transition Within a Propagating Flux Rope
We present a 2.5D MHD simulation of a magnetic flux rope (FR) propagating in
the heliosphere and investigate the cause of the observed sharp plasma beta
transition. Specifically, we consider a strong internal magnetic field and an
explosive fast start, such that the plasma beta is significantly lower in the
FR than the sheath region that is formed ahead. This leads to an unusual FR
morphology in the first stage of propagation, while the more traditional view
(e.g. from space weather simulations like Enlil) of a `pancake' shaped FR is
observed as it approaches 1 AU. We investigate how an equipartition line,
defined by a magnetic Weber number, surrounding a core region of a propagating
FR can demarcate a boundary layer where there is a sharp transition in the
plasma beta. The substructure affects the distribution of toroidal flux, with
the majority of the flux remaining in a small core region which maintains a
quasi-cylindrical structure. Quantitatively, we investigate a locus of points
where the kinetic energy density of the relative inflow field is equal to the
energy density of the transverse magnetic field (i.e. effective tension force).
The simulation provides compelling evidence that at all heliocentric distances
the distribution of toroidal magnetic flux away from the FR axis is not linear;
with 80% of the toroidal flux occurring within 40% of the distance from the FR
axis. Thus our simulation displays evidence that the competing ideas of a
pancaking structure observed remotely can coexist with a quasi-cylindrical
magnetic structure seen in situ.Comment: 11 pages of text + 6 figures. Accepted to ApJ on 16 Oct 201
Incorporating latent variables using nonnegative matrix factorization improves risk stratification in Brugada syndrome
Background:
A combination of clinical and electrocardiographic risk factors is used for risk stratification in Brugada syndrome. In this study, we tested the hypothesis that the incorporation of latent variables between variables using nonnegative matrix factorization can improve risk stratification compared with logistic regression.
Methods and Results:
This was a retrospective cohort study of patients presented with Brugada electrocardiographic patterns between 2000 and 2016 from Hong Kong, China. The primary outcome was spontaneous ventricular tachycardia/ventricular fibrillation. The external validation cohort included patients from 3 countries. A total of 149 patients with Brugada syndrome (84% males, median age of presentation 50 [38–61] years) were included. Compared with the nonarrhythmic group (n=117, 79%), the spontaneous ventricular tachycardia/ ventricular fibrillation group (n=32, 21%) were more likely to suffer from syncope (69% versus 37%, P=0.001) and atrial fibrillation (16% versus 4%, P=0.023) as well as displayed longer QTc intervals (424 [399–449] versus 408 [386–425]; P=0.020). No difference in QRS interval was observed (108 [98–114] versus 102 [95–110], P=0.104). Logistic regression found that syncope (odds ratio, 3.79; 95% CI, 1.64–8.74; P=0.002), atrial fibrillation (odds ratio, 4.15; 95% CI, 1.12–15.36; P=0.033), QRS duration (odds ratio, 1.03; 95% CI, 1.002–1.06; P=0.037) and QTc interval (odds ratio, 1.02; 95% CI, 1.01–1.03; P=0.009) were significant predictors of spontaneous ventricular tachycardia/ventricular fibrillation. Increasing the number of latent variables of these electrocardiographic indices incorporated from n=0 (logistic regression) to n=6 by nonnegative matrix factorization improved the area under the curve of the receiving operating characteristics curve from 0.71 to 0.80. The model improves area under the curve of external validation cohort (n=227) from 0.64 to 0.71.
Conclusions:
Nonnegative matrix factorization improves the predictive performance of arrhythmic outcomes by extracting latent features between different variables
Unusual association of NDM-1 with KPC-2 and armA among Brazilian Enterobacteriaceae isolates
We report the microbiological characterization of four New Delhi metallo-beta-lactamase-1 (bla(NDM-1))-producing Enterobacteriaceae isolated in Rio de Janeiro, Brazil. bla(NDM-1) was located on a conjugative plasmid and was associated with Klebsiella pneumoniae carbapenemase-2 (bla(KPC-2)) or aminoglycoside-resistance methylase ( armA), a 16S rRNA methylase not previously reported in Brazil, in two distinct strains of Enterobacter cloacae. Our results suggested that the introduction of bla(NDM-1) in Brazil has been accompanied by rapid spread, since our isolates showed no genetic relationship.Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)Universidade Federal de São Paulo, Dept Med, Lab Especial Microbiol Clin, São Paulo, SP, BrazilDASA, Lab Diagnost Amer, São Paulo, SP, BrazilUniversidade Federal de São Paulo, Dept Med, Lab Especial Microbiol Clin, São Paulo, SP, BrazilWeb of Scienc
Initiation and propagation of coronal mass ejections
This paper reviews recent progress in the research on the initiation and
propagation of CMEs. In the initiation part, several trigger mechanisms are
discussed; In the propagation part, the observations and modelings of EIT
waves/dimmings, as the EUV counterparts of CMEs, are described.Comment: 8 pages, 1 figure, an invited review, to appear in J. Astrophys.
Astro
Plasmoid-Induced-Reconnection and Fractal Reconnection
As a key to undertanding the basic mechanism for fast reconnection in solar
flares, plasmoid-induced-reconnection and fractal reconnection are proposed and
examined. We first briefly summarize recent solar observations that give us
hints on the role of plasmoid (flux rope) ejections in flare energy release. We
then discuss the plasmoid-induced-reconnection model, which is an extention of
the classical two-ribbon-flare model which we refer to as the CSHKP model. An
essential ingredient of the new model is the formation and ejection of a
plasmoid which play an essential role in the storage of magnetic energy (by
inhibiting reconnection) and the induction of a strong inflow into reconnection
region. Using a simple analytical model, we show that the plasmoid ejection and
acceleration are closely coupled with the reconnection process, leading to a
nonlinear instability for the whole dynamics that determines the macroscopic
reconnection rate uniquely. Next we show that the current sheet tends to have a
fractal structure via the following process path: tearing, sheet thinning,
Sweet- Parker sheet, secondary tearing, further sheet thinning... These
processes occur repeatedly at smaller scales until a microscopic plasma scale
(either the ion Larmor radius or the ion inertial length) is reached where
anomalous resistivity or collisionless reconnection can occur. The current
sheet eventually has a fractal structure with many plasmoids (magnetic islands)
of different sizes. When these plasmoids are ejected out of the current sheets,
fast reconnection occurs at various different scales in a highly time dependent
manner. Finally, a scenario is presented for fast reconnection in the solar
corona on the basis of above plasmoid-induced-reconnection in a fractal current
sheet.Comment: 9 pages, 11 figures, with using eps.sty; Earth, Planets and Space in
press; ps-file is also available at
http://stesun8.stelab.nagoya-u.ac.jp/~tanuma/study/shibata2001
Triggering an eruptive flare by emerging flux in a solar active-region complex
A flare and fast coronal mass ejection originated between solar active
regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in
front of the leading sunspot of the trailing region 11515. Analyzing the
evolution of the photospheric magnetic flux and the coronal structure, we find
that the flux emergence triggered the eruption by interaction with overlying
flux in a non-standard way. The new flux neither had the opposite orientation
nor a location near the polarity inversion line, which are favorable for strong
reconnection with the arcade flux under which it emerged. Moreover, its flux
content remained significantly smaller than that of the arcade (approximately
40 %). However, a loop system rooted in the trailing active region ran in part
under the arcade between the active regions, passing over the site of flux
emergence. The reconnection with the emerging flux, leading to a series of jet
emissions into the loop system, caused a strong but confined rise of the loop
system. This lifted the arcade between the two active regions, weakening its
downward tension force and thus destabilizing the considerably sheared flux
under the arcade. The complex event was also associated with supporting
precursor activity in an enhanced network near the active regions, acting on
the large-scale overlying flux, and with two simultaneous confined flares
within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and
Stellar Flares. 25 pages, 12 figure
Developing a methodology for three-dimensional correlation of PET–CT images and whole-mount histopathology in non-small-cell lung cancer
Background: Understanding the three-dimensional (3D) volumetric relationship between imaging and functional or histopathologic heterogeneity of tumours is a key concept in the development of image-guided radiotherapy. Our aim was to develop a methodologic framework to enable the reconstruction of resected lung specimens containing non-small-cell lung cancer (NSCLC), to register the result in 3D with diagnostic imaging, and to import the reconstruction into a radiation treatment planning system. Methods and Results: We recruited 12 patients for an investigation of radiology-pathology correlation (RPC) in NSCLC. Before resection, imaging by positron emission tomography (PET) or computed tomography (CT) was obtained. Resected specimens were formalin-fixed for 1-24 hours before sectioning at 3-mm to 10-mm intervals. To try to retain the original shape, we embedded the specimens in agar before sectioning. Consecutive sections were laid out for photography and manually adjusted to maintain shape. Following embedding, the tissue blocks underwent whole-mount sectioning (4-μm sections) and staining with hematoxylin and eosin. Large histopathology slides were used to whole-mount entire sections for digitization. The correct sequence was maintained to assist in subsequent reconstruction. Using Photoshop (Adobe Systems Incorporated, San Jose, CA, U.S.A.), contours were placed on the photographic images to represent the external borders of the section and the extent of macroscopic disease. Sections were stacked in sequence and manually oriented in Photoshop. The macroscopic tumour contours were then transferred to MATLAB (The Mathworks, Natick, MA, U.S.A.) and stacked, producing 3D surface renderings of the resected specimen and embedded gross tumour. To evaluate the microscopic extent of disease, customized "tile-based" and commercial confocal panoramic laser scanning (TISSUEscope: Biomedical Photometrics, Waterloo, ON) systems were used to generate digital images of whole-mount histopathology sections. Using the digital whole-mount images and imaging software, we contoured the gross and microscopic extent of disease. Two methods of registering pathology and imaging were used. First, selected PET and CT images were transferred into Photoshop, where they were contoured, stacked, and reconstructed. After importing the pathology and the imaging contours to MATLAB, the contours were reconstructed, manually rotated, and rigidly registered. In the second method, MATLAB tumour renderings were exported to a software platform for manual registration with the original PET and CT images in multiple planes. Data from this software platform were then exported to the Pinnacle radiation treatment planning system in DICOM (Digital Imaging and Communications in Medicine) format. Conclusions: There is no one definitive method for 3D volumetric RPC in NSCLC. An innovative approach to the 3D reconstruction of resected NSCLC specimens incorporates agar embedding of the specimen and whole-mount digital histopathology. The reconstructions can be rigidly and manually registered to imaging modalities such as CT and PET and exported to a radiation treatment planning system
- …