50 research outputs found

    Queue Management in Network Processors

    Get PDF
    Abstract: -One of the main bottlenecks when designing a network processing system is very often its memory subsystem. This is mainly due to the state-of-the-art network links operating at very high speeds and to the fact that in order to support advanced Quality of Service (QoS), a large number of independent queues is desirable. In this paper we analyze the performance bottlenecks of various data memory managers integrated in typical Network Processing Units (NPUs). We expose the performance limitations of software implementations utilizing the RISC processing cores typically found in most NPU architectures and we identify the requirements for hardware assisted memory management in order to achieve wire-speed operation at gigabit per second rates. Furthermore, we describe the architecture and performance of a hardware memory manager that fulfills those requirements. This memory manager, although it is implemented in a reconfigurable technology, it can provide up to 6.2Gbps of aggregate throughput, while handling 32K independent queues

    Microarchitecture of a MultiCore SoC for Data Analysis of a Lab-on-Chip Microarray

    Get PDF
    This paper presents a reconfigurable architecture of a lab-on-chip (LoC) microarray device capable to process data either in genotyping or in gene expression applications in a fraction of the time that is required by the usual software methods running on a standard computer. The entire LoC consists of a microfluidics part for the sample preparation and hybridization, a microsystem part including the application specific array of sensors for the electronic detection, and finally a reconfigurable processing part for the data analysis. The proposed data processing and analysis electronic module are an embedded multicore reconfigurable system-on-chip designed to analyze data from the forthcoming high-density oligonucleotide microarrays. The proposed architecture employs reconfigurable technology and has the capacity to process data from microarrays of various sizes from small size ones used in genotyping up to large-scale gene expression arrays. Additionally, the embedded processing cores feature reconfigurable circuitry for implementing the intense part of the processing, supplementing the various computational needs of the diverse applications for microarray real-time data processing and for a scalable reconfigurable architecture to handle also the future high-density microarrays

    Architecture and implementation of a frame aggregation unit for optical frame-based switching

    No full text

    Thermophilic anaerobic digestion of olive mill wastewater in an upflow packed bed reactor: Evaluation of 16S rRNA amplicon sequencing for microbial analysis

    No full text
    Olive mill wastewater, a by-product of olive oil production after the operation of three-phase decanters, was used in a thermophilic anaerobic digester targeting efficient bioconversion of its organic load into biogas. An active anaerobic inoculum originating from a mesophilic reactor, was acclimatized under thermophilic conditions and was filled into a high-rate upflow packed bed reactor. Its performance was tested towards the treatment efficacy of olive mill wastewater under thermophilic conditions reaching the minimum hydraulic retention time of 4.2 d with promising results. As analysis of the microbial communities is considered to be the key for the development of anaerobic digestion optimization techniques, the present work focused on characterizing the microbial community and its variation during the reactor's runs, via 16S rRNA amplicon sequencing. Identification of new microbial species and taxonomic groups determination is of paramount importance as these representatives determine the bioprocess outcome. The current study results may contribute to further olive mill wastewater exploitation as a potential source for efficient biogas production

    Nitrification upon Nitrogen Starvation and Recovery: Effect of Stress Period, Substrate Concentration and pH on Ammonia Oxidizers’ Performance

    No full text
    Nitrification has been widely applied in wastewater treatment, however gaining more insight into the nitrifiers’ physiology and stress response is necessary for the optimization of nutrient removal and design of advanced processes. Since nitrification initiates with ammonia oxidation performed by ammonia-oxidizing bacteria (AOB), the purpose of this study was to investigate the effects of short-term ammonia starvation on nitrogen uptake and transformation efficiency, as well as the performance of starved nitrifiers under various initial substrate concentrations and pH values. Ammonium deprivation for 3 days resulted in fast ammonium/ammonia accumulation upon nitrogen availability, with a maximum uptake rate of 3.87 mmol gprotein−1 min−1. Furthermore, a delay in the production of nitrate was observed with increasing starvation periods, resulting in slower recovery and lower nitrification rate compared to non-starved cells. The maximum accumulation capacity observed was 8.51% (w/w) independently of the external nitrogen concentration, at a range of 250–750 mg N L−1, while pH significantly affected ammonia oxidizers’ response, with alkaline values enhancing nitrogen uptake. In total, ammonia accumulation after short-term starvation might serve as an important strategy that helps AOB restore their activity, while concurrently it could be applied in wastewater treatment for effective nitrogen removal and subsequent biomass utilization
    corecore