166 research outputs found

    Mössbauer studies of trimethyl and triphenyl tin chloride adsorbed on grafoil

    Get PDF
    Trimethyl tin chloride [(CH3)3SnCl] and triphenyl tin chloride [(C6H5)3SnCl] adsorbed on grafoil were studied by the Mössbauer resonance in 119Sn. The temperature dependence of the Mössbauer fraction and the anisotropy ratio of the quadrupole transitions in (CH3)3SnCl measured at two different angles supplied information on the structure of the substrate and on the anisotropy of the recoilless fraction. The relative orientation of (C6H5)3SnCl adsorbed on grafoil was found to be with the Sn–Cl axis perpendicular to the exposed basal planes of grafoil, contrary to (CH3)3SnCl, where the molecules have their symmetry axes parallel to the grafoil plane

    Scaling Of The Coulomb Energy Due To Quantum Fluctuations In The Charge Of A Quantum Dot

    Get PDF
    The charging energy of a quantum dot is measured through the effect of its potential on the conductance of a second dot. This technique allows a measurement of the scaling of the dot's charging energy with the conductance of the tunnel barriers leading to the dot. We find that the charging energy scales quadratically with the reflection probability of the barriers. In a second experiment we study the transition from a single to a double-dot which exhibits a scaling behavior linear in the reflection probability. The observed power-laws agree with a recent theory.Comment: 5 pages, uuencoded and compressed postscript file, with figure

    Photoluminescence investigations of 2D hole Landau levels in p-type single Al_{x}Ga_{1-x}As/GaAs heterostructures

    Full text link
    We study the energy structure of two-dimensional holes in p-type single Al_{1-x}Ga_{x}As/GaAs heterojunctions under a perpendicular magnetic field. Photoluminescence measurments with low densities of excitation power reveal rich spectra containing both free and bound-carrier transitions. The experimental results are compared with energies of valence-subband Landau levels calculated using a new numerical procedure and a good agreement is achieved. Additional lines observed in the energy range of free-carrier recombinations are attributed to excitonic transitions. We also consider the role of many-body effects in photoluminescence spectra.Comment: 13 pages, 10 figures, accepted to Physical Review

    Monolayer dual gate transistors with a single charge transport layer

    Get PDF
    A dual gate transistor was fabricated using a self-assembled monolayer as the semiconductor. We show the possibility of processing a dielectric on top of the self-assembled monolayer without deteriorating the device performance. The two gates of the transistor accumulate charges in the monomolecular transport layer and artifacts caused by the semiconductor thickness are negated. We investigate the electrical transport in a dual gate self-assembled monolayer field-effect transistor and present a detailed analysis of the importance of the contact geometry in monolayer field-effect transistors.

    Reply to Comment on ``Two-dimensional charged-exciton complexes''

    Full text link
    We respond to criticisms raised by K. Varga (cond-mat/9802262) and reaffirm that the results in our original paper obtained using a two-body analytical method remains valid within the framework of an effective excitonic composite model. The conceptual model of the excitonic systems as well as the numerical method based on variational functions utilized by Varga differ significantly from ours. Hence comparison of binding energies of the charged-biexciton remains questionable. In this reply, we discuss the shortcomings of modelling the charged-biexciton as a five-body system and treating excitonic complexes as atomic systems, as done in Varga's Comment.Comment: 3 pages, no figure
    • …
    corecore