8,216 research outputs found

    Non-Gaussianity from Baryon Asymmetry

    Full text link
    We study a scenario that large non-Gaussianity arises from the baryon asymmetry of the Universe. There are baryogenesis scenarios containing a light scalar field, which may result in baryonic isocurvature perturbations with some amount of non-Gaussianity. As an explicit example we consider the Affleck-Dine mechanism and show that a flat direction of the supersymmeteric standard model can generate large non-Gaussianity in the curvature perturbations, satisfying the observational constraints on the baryonic isocurvature perturbations. The sign of a non-linearity parameter, f_{NL}, is negative, if the Affleck-Dine mechanism accounts for the observed baryon asymmetry; otherwise it can be either positive or negative.Comment: 25 pages, 7 figures; minor correction, references added; version to appear in JCA

    511 keV line and diffuse gamma rays from moduli

    Full text link
    We obtain the spectrum of gamma ray emissions from the moduli whose decay into e+e−e^+ e^- accounts for the 511 keV line observed by SPI/INTERGRAL. The moduli emit gamma rays through internal bremsstrahlung, and also decay directly into two gammas via tree and/or one-loop diagrams. We show that the internal bremsstahlung constrains the mass of the moduli below ∼40\sim 40 MeV model-independently. On the other hand, the flux of two gammas directly decayed from the moduli through one loop diagrams will exceed the observed galactic diffuse gamma-ray background if the moduli mass exceeds ∼20\sim 20 MeV in the typical situation. Moreover, forthcoming analysis of SPI data in the range of 1-8 MeV may detect the line emisson with the energy half the moduli mass in the near future, which confirms the decaying moduli scenario.Comment: 6 pages, 5 figures, published versio

    ^{115}In-NQR evidence for unconventional superconductivity in CeIn_3 under pressure

    Full text link
    We report evidence for unconventional superconductivity in CeIn_3 at a pressure P = 2.65 GPa above critical pressure (P_c ~ 2.5 GPa) revealed by the measurements of nuclear-spin-lattice-relaxation time (T_1) and ac-susceptibility (ac-chi). Both the measurements of T_1 and ac-chi have pointed to a superconducting transition at T_c = 95 mK, which is much lower than an onset temperature T_{onset} = 0.15 K at zero resistance. The temperature dependence of 1/T_1 shows no coherence peak just below T_c, indicative of an unconventional nature for the superconductivity induced in CeIn_3.Comment: 4 pages, 4 figures, to be published in Phys.Rev.

    Gapless Magnetic and Quasiparticle Excitations due to the Coexistence of Antiferromagnetism and Superconductivity in CeRhIn5_5 : A study of 115^{115}In-NQR under Pressure

    Full text link
    We report systematic measurements of ac-susceptibility, nuclear-quadrupole-resonance spectrum, and nuclear-spin-lattice-relaxation time (T1T_1) on the pressure (PP)- induced heavy-fermion (HF) superconductor CeRhIn5_5. The temperature (TT) dependence of 1/T11/T_1 at PP = 1.6 GPa has revealed that antiferromagnetism (AFM) and superconductivity (SC) coexist microscopically, exhibiting the respective transition at TN=2.8T_N = 2.8 K and TcMFT^{MF}_c = 0.9 K. It is demonstrated that SC does not yield any trace of gap opening in low-lying excitations below Tconset=2T_c^{onset} = 2 K, but TcMF=0.9T_c^{MF} = 0.9 K, followed by a T1TT_1T = const law. These results point to the unconventional characteristics of SC coexisting with AFM. We highlight that both of the results deserve theoretical work on the gapless nature in low-lying excitation spectrum due to the coexistence of AFM and SC and the lack of the mean-field regime below Tconset=2T_c^{onset} = 2 K.Comment: 4pages,5figures,revised versio

    The significance of self-annealing in two-phase alloys processed by high-pressure torsion

    No full text
    The Zn-22% Al eutectoid alloy and the Pb-62% Sn eutectic alloy were processed by high-pressure torsion (HPT) over a range of experimental conditions. Both alloys exhibit similar characteristics with significant grain refinement after processing by HPT but with a reduction in the hardness values by comparison with the initial unprocessed conditions. After storage at room temperature for a period of time, it is shown that the microhardness of both alloys gradually recovers to close to the initial unprocessed values. Electron backscatter diffraction (EBSD) measurements on the Pb-Sn alloy suggest that the self-recovery behaviour is correlated with the fraction of high-angle grain boundaries (HAGBs) after HPT processing. Thus, high fractions of HAGBs occur immediately after processing and this favours grain boundary migration and sliding which is important in the self-annealing and recovery process. Conversely, the relatively lower fractions of HAGBs occurring after annealing at room temperature are not so conducive to easy migration and slidin

    Spectrum of Background X-rays from Moduli Dark Matter

    Get PDF
    We examine the XX-ray spectrum from the decay of the dark-matter moduli with mass ∼O(100)\sim {\cal O}(100)keV, in particular, paying attention to the line spectrum from the moduli trapped in the halo of our galaxy. It is found that with the energy resolution of the current experiments (∼10\sim 10%) the line intensity is about twice stronger than that of the continuum spectrum from the moduli that spread in the whole universe. Therefore, in the future experiments with higher energy resolutions it may be possible to detect such line photons. We also investigate the γ\gamma-ray spectrum emitted from the decay of the multi-GeV moduli. It is shown that the emitted photons may form MeV-bump in the γ\gamma-ray spectrum. We also find that if the modulus mass is of the order of 10 GeV, the emitted photons at the peak of the continuum spectrum loses their energy by the scattering and the shape of the spectrum is significantly changed, which makes the constraint weaker than that obtained in the previous works.Comment: 14 pages (RevTeX file) including four postscript figures, reviced version to be published in Physical Review

    New Superconducting and Magnetic Phases Emerge on the Verge of Antiferromagnetism in CeIn3_3

    Full text link
    We report the discovery of new superconducting and novel magnetic phases in CeIn3_3 on the verge of antiferromagnetism (AFM) under pressure (PP) through the In-nuclear quadrupole resonance (NQR) measurements. We have found a PP-induced phase separation of AFM and paramagnetism (PM) without any trace for a quantum phase transition in CeIn3_3. A new type of superconductivity (SC) was found in P=2.28−2.5P=2.28-2.5 GPa to coexist with AFM that is magnetically separated from PM where the heavy fermion SC takes place. We propose that the magnetic excitations such as spin-density fluctuations induced by the first-order magnetic phase transition might mediate attractive interaction to form Cooper pairs.Comment: 4 pages, 4 EPS figures, submitted to J. Phys. Soc. Jp

    Critical behavior of self-assembled rigid rods on triangular and honeycomb lattices

    Full text link
    Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of self-assembled rigid rods on triangular and honeycomb lattices at intermediate density has been studied. The system is composed of monomers with two attractive (sticky) poles that, by decreasing temperature or increasing density, polymerize reversibly into chains with three allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The determination of the critical exponents, along with the behavior of Binder cumulants, indicate that the IN transition belongs to the q=1 Potts universality class.Comment: 6 pages, 5 figure
    • …
    corecore