981 research outputs found

    Dynamical magneto-electric coupling in helical magnets

    Full text link
    Collective mode dynamics of the helical magnets coupled to electric polarization via spin-orbit interaction is studied theoretically. The soft modes associated with the ferroelectricity are not the transverse optical phonons, as expected from the Lyddane-Sachs-Teller relation, but are the spin waves hybridized with the electric polarization. This leads to the Drude-like dielectric function ϵ(ω)\epsilon(\omega) in the limit of zero magnetic anisotropy. There are two more low-lying modes; phason of the spiral and rotation of helical plane along the polarization axis. The roles of these soft modes in the neutron scattering and antiferromagnetic resonance are revealed, and a novel experiment to detect the dynamical magneto-electric coupling is proposed.Comment: 5 pages, 1 figur

    Stable Bosonic Topological Edge Modes in the Presence of Many-Body Interactions

    Full text link
    Many magnetic materials are predicted to exhibit bosonic topological edge modes in their excitation spectra, because of the nontrivial topology of their magnon, triplon or other quasi-particle band structures. However, there is a discrepancy between theory prediction and experimental observation, which suggests some underlying mechanism that intrinsically suppresses the expected experimental signatures, like the thermal Hall current. Many-body interactions that are not accounted for in the non-interacting quasi-particle picture are most often identified as the reason for the absence of the topological edge modes. Here we report stable bosonic edge modes at the boundaries of a ladder quantum paramagnet with gapped triplon excitations in the presence of the full many-body interaction. For the first time, we use tensor network methods to resolve topological edge modes in the time-dependent spin-spin correlations and the dynamical structure factor, which is directly accessible experimentally. We further show that these edge modes have anomalously long time coherence, discuss the topological phase diagram of the model, demonstrate the fractionalization of its low-lying excitations, and propose potential material candidates

    Characterizing and Improving Generalized Belief Propagation Algorithms on the 2D Edwards-Anderson Model

    Full text link
    We study the performance of different message passing algorithms in the two dimensional Edwards Anderson model. We show that the standard Belief Propagation (BP) algorithm converges only at high temperature to a paramagnetic solution. Then, we test a Generalized Belief Propagation (GBP) algorithm, derived from a Cluster Variational Method (CVM) at the plaquette level. We compare its performance with BP and with other algorithms derived under the same approximation: Double Loop (DL) and a two-ways message passing algorithm (HAK). The plaquette-CVM approximation improves BP in at least three ways: the quality of the paramagnetic solution at high temperatures, a better estimate (lower) for the critical temperature, and the fact that the GBP message passing algorithm converges also to non paramagnetic solutions. The lack of convergence of the standard GBP message passing algorithm at low temperatures seems to be related to the implementation details and not to the appearance of long range order. In fact, we prove that a gauge invariance of the constrained CVM free energy can be exploited to derive a new message passing algorithm which converges at even lower temperatures. In all its region of convergence this new algorithm is faster than HAK and DL by some orders of magnitude.Comment: 19 pages, 13 figure

    Entanglement Entropy in the Calogero-Sutherland Model

    Full text link
    We investigate the entanglement entropy between two subsets of particles in the ground state of the Calogero-Sutherland model. By using the duality relations of the Jack symmetric polynomials, we obtain exact expressions for both the reduced density matrix and the entanglement entropy in the limit of an infinite number of particles traced out. From these results, we obtain an upper bound value of the entanglement entropy. This upper bound has a clear interpretation in terms of fractional exclusion statistics.Comment: 14 pages, 3figures, references adde

    Geometry versus Entanglement in Resonating Valence Bond Liquids

    Full text link
    We investigate the behavior of bipartite as well as genuine multipartite entanglement of a resonating valence bond state on a ladder. We show that the system possesses significant amounts of bipartite entanglement in the steps of the ladder while no substantial bipartite entanglement is present in the rails. Genuine multipartite entanglement present in the system is negligible. The results are in stark contrast with the entanglement properties of the same state on isotropic lattices in two and higher dimensions, indicating that the geometry of the lattice can have important implications on the quality of quantum information and other tasks that can be performed by using multiparty states on that lattice.Comment: 6 pages, 8 figures, RevTeX

    Voltage dependence of Landau-Lifshitz-Gilbert damping of a spin in a current driven tunnel junction

    Full text link
    We present a theory of Landau-Lifshitz-Gilbert damping α\alpha for a localized spin S{\vec S} in the junction coupled to the conduction electrons in both leads under an applied volatege VV. We find the voltage dependence of the damping term reflecting the energy dependence of the density of states. We find the effect is linear in the voltage and cotrolled by particle-hole asymmetry of the leads.Comment: 6 pages, 3 figure

    Relations between some invariants of algebraic varieties in positive characteristic

    Full text link
    We discuss relations between certain invariants of varieties in positive characteristic, like the a-number and the height of the Artin-Mazur formal group. We calculate the a-number for Fermat surfacesComment: 13 page

    Electric-dipole active two-magnon excitation in {\textit{ab}} spiral spin phase of a ferroelectric magnet Gd0.7_{\textbf{0.7}}Tb0.3_{\textbf{0.3}}MnO3_{\textbf 3}

    Full text link
    A broad continuum-like spin excitation (1--10 meV) with a peak structure around 2.4 meV has been observed in the ferroelectric abab spiral spin phase of Gd0.7_{0.7}Tb0.3_{0.3}MnO3_3 by using terahertz (THz) time-domain spectroscopy. Based on a complete set of light-polarization measurements, we identify the spin excitation active for the light EE vector only along the a-axis, which grows in intensity with lowering temperature even from above the magnetic ordering temperature but disappears upon the transition to the AA-type antiferromagnetic phase. Such an electric-dipole active spin excitation as observed at THz frequencies can be ascribed to the two-magnon excitation in terms of the unique polarization selection rule in a variety of the magnetically ordered phases.Comment: 11 pages including 3 figure

    Cartan subalgebras and the UCT problem, II

    Get PDF
    We show that outer approximately represenbtable actions of a finite cyclic group on UCT Kirchberg algebras satisfy a certain quasi-freeness type property if the corresponding crossed products satisfy the UCT and absorb a suitable UHF algebra tensorially. More concretely, we prove that for such an action there exists an inverse semigroup of homogeneous partial isometries that generates the ambient C*-algebra and whose idempotent semilattice generates a Cartan subalgebra. We prove a similar result for actions of finite cyclic groups with the Rokhlin property on UCT Kirchberg algebras absorbing a suitable UHF algebra. These results rely on a new construction of Cartan subalgebras in certain inductive limits of Cartan pairs. We also provide a characterisation of the UCT problem in terms of finite order automorphisms, Cartan subalgebras and inverse semigroups of partial isometries of the Cuntz algebra O2\mathcal{O}_2. This generalizes earlier work of the authors.Comment: minor revisions; final version, accepted for publication in Math. Ann.; 26 page
    corecore