7 research outputs found
Isobath variation and trapping of continental shelf waves
Since Trösch (Proceedings of the 4th International Conference on Applied Numerical Modeling, Tainan, Taiwan, 1984 (ed. H. M. Hsia, Y. L. Chou, S. Y. Wang & S. J. Hsieh) Science and Technology Series, vol. 63, 1986, pp. 307–311. American Astronautical Society) found trapped sub-inertial oscillations in computations of low-frequency variability in the Lake of Lugano, models of trapping have generally considered evenly spaced isobaths parallel to shorelines with approximate boundary conditions at any shelf–ocean boundary. Here an asymptotic analysis for slowly varying topography and accurate spectral computations demonstrate trapping on non-rectilinear shelves. It is shown that changes in any of three factors, isobath curvature, distance from the coast and the shelf-break, and the slope at the shelf-break, are sufficient on their own to give trapping. Continental shelves that abut smoothly onto the open ocean are considered thus avoiding the shelf–ocean boundary condition approximation and allowing the accuracy of previous approximations to be assessed
Theoretical study of Oldroyd-b visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing
The characteristics of the flow field of both viscous and viscoelastic fluids passing through a curved pipe with a Navier slip boundary condition have been investigated analytically in the present study. The Oldroyd-B constitutive equation is employed to simulate realistic transport of dilute polymeric solutions in curved channels. In order to linearize the momentum and constitutive equations, a perturbation method is used in which the ratio of radius of cross section to the radius of channel curvature is employed as the perturbation parameter. The intensity of secondary and main flows is mainly affected by the hoop stress and it is demonstrated in the present study that both the Weissenberg number (the ratio of elastic force to viscous force) and slip coefficient play major roles in determining the strengths of both flows. It is also shown that as a result of an increment in slip coefficient, the position of maximum velocity markedly migrates away from the pipe center towards the outer side of curvature. Furthermore, results corresponding to Navier slip scenarios exhibit non-uniform distributions in both the main and lateral components of velocity near the wall which can notably vary from the inner side of curvature to the outer side. The present solution is also important in polymeric flow processing systems because of experimental evidence indicating that the no-slip condition can fail for these flows, which is of relevance to chemical engineers
Trapped continental shelf waves with a free-surface
A number of recent results have shown that within the shallow water, rigid-lid approximation, alongshore variations in the bathymetry, i.e. a submerged ridge, can lead to continental shelf waves (CSWs) that are localised geographically at the ridge and then decay both along and away from the coast. Removing the rigid-lid assumption, introduces the superinertial Poincaré waves and a Kelvin wave that is present at all frequencies. This implies that the spectrum of the associated wave operator, which is bounded for the rigid lid case, is continuous and unbounded for the free-surface case. In the rigid-lid case the localisation of modes are isolated eigenvalues lying above the continuous spectrum whereas any localised modes for the free-surface problem must necessarily be embedded in the continuous spectrum. The purpose of this work is to construct trapped CSWs analytically and numerically for a non-rectilinear shelf. A regular asymptotic method is employed by considering a slowly varying, non-rectilinear shelf with an approximate boundary condition at the shelf–ocean boundary. It is shown that even with the free-surface present, trapped CSWs do indeed exist for the submerged ridge topography. Comparison with highly accurate numerical results demonstrates the accuracy of the asymptotic method and also allows the consideration of shelves that abut an open ocean so avoiding the approximate boundary condition at the shelf–ocean boundary