1,364 research outputs found
Statistical Constraints on State Preparation for a Quantum Computer
Quantum computing algorithms require that the quantum register be initially
present in a superposition state. To achieve this, we consider the practical
problem of creating a coherent superposition state of several qubits. Owing to
considerations of quantum statistics, this requires that the entropy of the
system go down. This, in turn, has two practical implications: (i) the initial
state cannot be controlled; (ii) the temperature of the system must be reduced.
These factors, in addition to decoherence and sensitivity to errors, must be
considered in the implementation of quantum computers.Comment: 7 pages; the final published versio
Geometric phase and gauge theory structure in quantum computing
We discuss the presence of a geometrical phase in the evolution of a qubit
state and its gauge structure. The time evolution operator is found to be the
free energy operator, rather than the Hamiltonian operator.Comment: 5 pages, presented at Fifth International Workshop DICE2010:
Space-Time-Matter - current issues in quantum mechanics and beyond,
Castiglioncello (Tuscany), September 13-17, 201
Reconstruction from Radon projections and orthogonal expansion on a ball
The relation between Radon transform and orthogonal expansions of a function
on the unit ball in \RR^d is exploited. A compact formula for the partial
sums of the expansion is given in terms of the Radon transform, which leads to
algorithms for image reconstruction from Radon data. The relation between
orthogonal expansion and the singular value decomposition of the Radon
transform is also exploited.Comment: 15 page
Maximum-likelihood absorption tomography
Maximum-likelihood methods are applied to the problem of absorption
tomography. The reconstruction is done with the help of an iterative algorithm.
We show how the statistics of the illuminating beam can be incorporated into
the reconstruction. The proposed reconstruction method can be considered as a
useful alternative in the extreme cases where the standard ill-posed
direct-inversion methods fail.Comment: 7 pages, 5 figure
Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm
Practical applications of thermoacoustic tomography require numerical
inversion of the spherical mean Radon transform with the centers of integration
spheres occupying an open surface. Solution of this problem is needed (both in
2-D and 3-D) because frequently the region of interest cannot be completely
surrounded by the detectors, as it happens, for example, in breast imaging. We
present an efficient numerical algorithm for solving this problem in 2-D
(similar methods are applicable in the 3-D case). Our method is based on the
numerical approximation of plane waves by certain single layer potentials
related to the acquisition geometry. After the densities of these potentials
have been precomputed, each subsequent image reconstruction has the complexity
of the regular filtration backprojection algorithm for the classical Radon
transform. The peformance of the method is demonstrated in several numerical
examples: one can see that the algorithm produces very accurate reconstructions
if the data are accurate and sufficiently well sampled, on the other hand, it
is sufficiently stable with respect to noise in the data
Tomographic reconstruction of the Wigner function on the Bloch sphere
We present a filtered backprojection algorithm for reconstructing the Wigner
function of a system of large angular momentum j from Stern-Gerlach-type
measurements. Our method is advantageous over the full determination of the
density matrix in that it is insensitive to experimental fluctuations in j, and
allows for a natural elimination of high-frequency noise in the Wigner function
by taking into account the experimental uncertainties in the determination of
j, its projection m, and the quantization axis orientation. No data binning and
no arbitrary smoothing parameters are necessary in this reconstruction. Using
recently published data [Riedel et al., Nature 464:1170 (2010)] we reconstruct
the Wigner function of a spin-squeezed state of a Bose-Einstein condensate of
about 1250 atoms, demonstrating that measurements along quantization axes lying
in a single plane are sufficient for performing this tomographic
reconstruction. Our method does not guarantee positivity of the reconstructed
density matrix in the presence of experimental noise, which is a general
limitation of backprojection algorithms.Comment: 16 pages, 6 figures; minor modification
Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis
X-ray diffraction contrast tomography (DCT) is a technique for mapping grain shape and orientation in plastically undeformed polycrystals. In this paper, we describe a modified DCT data acquisition strategy which permits the incorporation of an innovative Friedel pair method for analyzing diffraction data. Diffraction spots are acquired during a 360 degree rotation of the sample and are analyzed in terms of the Friedel pairs ((hkl) and (hkl -) reflections, observed 180 degrees apart in rotation). The resulting increase in the accuracy with which the diffraction vectors are determined allows the use of improved algorithms for grain indexing (assigning diffraction spots to the grains from which they arise) and reconstruction. The accuracy of the resulting grain maps is quantified with reference to synchrotron microtomography data for a specimen made from a beta titanium system in which a second phase can be precipitated at grain boundaries, thereby revealing the grain shapes. The simple changes introduced to the DCT methodology are equally applicable to other variants of grain mapping. Copyright 2009 American Institute of Physics
Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization
We present a practical implementation of an optimal first-order method, due
to Nesterov, for large-scale total variation regularization in tomographic
reconstruction, image deblurring, etc. The algorithm applies to -strongly
convex objective functions with -Lipschitz continuous gradient. In the
framework of Nesterov both and are assumed known -- an assumption
that is seldom satisfied in practice. We propose to incorporate mechanisms to
estimate locally sufficient and during the iterations. The mechanisms
also allow for the application to non-strongly convex functions. We discuss the
iteration complexity of several first-order methods, including the proposed
algorithm, and we use a 3D tomography problem to compare the performance of
these methods. The results show that for ill-conditioned problems solved to
high accuracy, the proposed method significantly outperforms state-of-the-art
first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure
Adapting “MOVE” to accelerate VMMC coverage for HIV prevention in priority populations:Implementation experiences from Uganda’s military settings
This paper describes the WHO’s Model of Optimizing Volumes and Efficiencies (MOVE), adapted by the University Research Council (URC) - Department of Defense HIV/AIDS Prevention Program (DHAPP) to rapidly scale up Voluntary Medical Male Circumcision (VMMC) within Uganda’s military health facilities. First, we examine the MOVE model and then present the URC-DHAPP adapted intervention package comprising of: a) a Command-driven approach, b) Mobile theatres c) Quality assurance d) Data strengthening and reflection. To expand VMMC, URC-DHAPP worked with army commanders to create awareness, mobilize their troops and surgeons were assigned daily targets. The mobile theatre involved regular visits to hard-to-reach outposts and placing several mobile camps at health facilities close to deployment sites. All stakeholders were briefed on performance trends of previous medical camps and the program was monitored through VMMC camp reports. URC-DHAPP registered an exponential increase in VMMC coverage from 13% performance at Q2 to over 140% in Q4. The integrated approach led to circumcision of over 22,000 men (15-49 years) in a record four months. Our approach also contributed to health system strengthening and national HIV preventiontargets. We conclude that the MOVE is cost-effective and can be successfully scaled up in resource-limited settings with a high HIV burden when implemented with cognizance of contextual specificities
- …