315 research outputs found

    Electronic structure of the muonium center as a shallow donor in ZnO

    Full text link
    The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a [0001] axis, indicating that they are located at the AB_{O,//} and BC_{//} sites. It is inferred from their small ionization energy (~6 meV and 50 meV) and hyperfine parameters (~10^{-4} times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR

    Field-Induced Uniform Antiferromagnetic Order Associated with Superconductivity in Pr1x_{1-x}LaCex_{x}CuO4δ_{4-\delta}

    Full text link
    Strong correlation between field-induced antiferromagnetic (AF) order and superconductivity is demonstrated for an electron-doped cuprate superconductor, Pr1x_{1-x}LaCex_{x}CuO4δ_{4-\delta} (PLCCO). In addition to the specimen with x=0.11x=0.11 (which is close to the AF phase boundary, x0.10x\simeq0.10), we show that the one with x=0.15x=0.15 (Tc16T_c\simeq16 K at zero field) also exhibits the field-induced AF order with a reduced magnitude of the induced moment. The uniform muon Knight shift at a low magnetic field (102\sim10^2 Oe) indicates that the AF order is not localized within the cores of flux lines, which is in a marked contrast with theoretical prediction for hole-doped cuprates. The presence of anomalous non-diagonal hyperfine coupling between muons and Pr ions is also demonstrated in detail.Comment: 8 pages, 5 figures, to be published in J. Phys. Soc. Jp

    Generic First Order Orientation Transition of Vortex Lattices in Type II Superconductors

    Full text link
    First order transition of vortex lattices (VL) observed in various superconductors with four-fold symmetry is explained microscopically by quasi-classical Eilenberger theory combined with nonlocal London theory. This transition is intrinsic in the generic successive VL phase transition due to either gap or Fermi velocity anisotropies. This is also suggested by the electronic states around vortices. Ultimate origin of this phenomenon is attributed to some what hidden frustrations of a spontaneous symmetry broken hexagonal VL on the underlying four-fold crystalline symmetry.Comment: 4 pages, 5 figures, some typos are correcte

    Field-Induced Quasiparticle Excitation in Ca(Al0.5_{0.5}Si0.5_{0.5})2_2: Evidence for unconventional Superconductivity

    Full text link
    The temperature (TT) and magnetic field (HH) dependence of the magnetic penetration depth, λ(T,H)\lambda(T,H), in Ca(Al0.5_{0.5}Si0.5_{0.5})2_2 exhibits significant deviation from that expected for conventional BCS superconductors. In particular, it is inferred from a field dependence of λ(H)\lambda(H) (H\propto H) at 2.0 K that the quasiparticle excitation is strongly enhanced by the Doppler shift. This suggests that the superconducting order parameter in Ca(Al0.5_{0.5}Si0.5_{0.5})2_2 is characterized by a small energy scale ΔS/kB2\Delta_S/k_B\le 2 K originating either from anisotropy or multi-gap structure.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Prominent quasi-particle peak in the photoemission spectrum of the metallic phase of V_2O_3

    Full text link
    We present the first observation of a prominent quasi-particle peak in the photoemission spectrum of the metallic phase of V_2O_3 and report new spectral calculations that combine the local density approximation with the dynamical mean-field theory (using quantum Monte Carlo simulations) to show the development of such a distinct peak with decreasing temperature. The experimental peak width and weight are significantly larger than in the theory.Comment: 4 pages, 3 figures, supercedes cond-mat/010804
    corecore