380 research outputs found
Lehmann-Symanzik-Zimmermann Reduction Approach to Multi-Photon Scattering in Coupled-Resonator Arrays
We present a quantum field theoretical approach based on the
Lehmann-Symanzik-Zimmermann reduction for the multi-photon scattering process
in a nano-architecture consisting of the coupled resonator arrays (CRA), which
are also coupled to some artificial atoms as the controlling quantum node. By
making use of this approach, we find the bound states of single photon for an
elementary unit, the T-type CRA, and explicitly obtain its multi-photon
scattering S-matrix in various situations. We also use this method to calculate
the multi-photon S-matrices for the more complex quantum network constructed
with main T-type CRA's, such as a H-type CRA waveguide.Comment: 15 pages, 14 figure
Local Fields without Restrictions on the Spectrum of 4-Momentum Operator and Relativistic Lindblad Equation
Quantum theory of Lorentz invariant local scalar fields without restrictions
on 4-momentum spectrum is considered. The mass spectrum may be both discrete
and continues and the square of mass as well as the energy may be positive or
negative. Such fields can exist as part of a hidden matter in the Universe if
they interact with ordinary fields very weakly. Generalization of
Kallen-Lehmann representation for propagators of these fields is found. The
considered generalized fields may violate CPT- invariance. Restrictions on
mass-spectrum of CPT-violating fields are found. Local fields that annihilate
vacuum state and violate CPT- invariance are constructed in this scope. Correct
local relativistic generalization of Lindblad equation for density matrix is
written for such fields. This generalization is particulary needed to describe
the evolution of quantum system and measurement process in a unique way.
Difficulties arising when the field annihilating the vacuum interacts with
ordinary fields are discussed.Comment: Latex 23 pages, sent to "Foundations of Physics
Signature of short distance physics on inflation power spectrum and CMB anisotropy
The inflaton field responsible for inflation may not be a canonical
fundamental scalar. It is possible that the inflaton is a composite of fermions
or it may have a decay width. In these cases the standard procedure for
calculating the power spectrum is not applicable and a new formalism needs to
be developed to determine the effect of short range interactions of the
inflaton on the power spectrum and the CMB anisotropy. We develop a general
formalism for computing the power spectrum of curvature perturbations for such
non-canonical cases by using the flat space K\"all\'en-Lehmann spectral
function in curved quasi-de Sitter space assuming implicitly that the
Bunch-Davis boundary conditions enforces the inflaton mode functions to be
plane wave in the short wavelength limit and a complete set of mode functions
exists in quasi-de Sitter space. It is observed that the inflaton with a decay
width suppresses the power at large scale while a composite inflaton's power
spectrum oscillates at large scales. These observations may be vindicated in
the WMAP data and confirmed by future observations with PLANCK.Comment: 17 pages, 4 figures, Extended journal version, Accepted for
publication in JCA
QED effects on individual atomic orbital energies
Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.Fil: Koziol, Karol. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Aucar, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentin
Improved Term of the Electron Anomalous Magnetic Moment
We report a new value of electron , or , from 891 Feynman diagrams
of order . The FORTRAN codes of 373 diagrams containing closed
electron loops have been verified by at least two independent formulations. For
the remaining 518 diagrams, which have no closed lepton loop, verification by a
second formulation is not yet attempted because of the enormous amount of
additional work required. However, these integrals have structures that allow
extensive cross-checking as well as detailed comparison with lower-order
diagrams through the renormalization procedure. No algebraic error has been
uncovered for them. The numerical evaluation of the entire term by
the integration routine VEGAS gives , where the
uncertainty is obtained by careful examination of error estimates by VEGAS.
This leads to ,
where the uncertainties come from the term, the estimated
uncertainty of term, and the inverse fine structure constant,
, measured by atom interferometry combined
with a frequency comb technique, respectively. The inverse fine structure
constant derived from the theory and the Seattle
measurement of is .Comment: 64 pages and 10 figures. Eq.(16) is corrected. Comments are added
after Eq.(40
Sixth-Order Vacuum-Polarization Contribution to the Lamb Shift of the Muonic Hydrogen
The sixth-order electron-loop vacuum-polarization contribution to the
Lamb shift of the muonic hydrogen ( bound
state) has been evaluated numerically. Our result is 0.007608(1) meV. This
eliminates the largest uncertainty in the theoretical calculation. Combined
with the proposed precision measurement of the Lamb shift it will lead to a
very precise determination of the proton charge radius.Comment: 4 pages, 5 figures the totoal LS number is change
On V_ud determination from kaon decays
The pion beta decay pi^+ -> pi^0 e^+ nu proceeds through pure weak vector
hadronic currents and, therefore, the theoretical prediction for it is more
reliable than for the processes with axial-vector current contribution. For
example, recently the pion beta decay has been used for V_ud determination. The
main aim of this letter is to point that kaon beta decay K^0 -> K^+(pi^+ pi^0)
e^- nu-bar analogously can be used for this purpose.Comment: 3 pages, no figures, one reference adde
Ghost Busting: PT-Symmetric Interpretation of the Lee Model
The Lee model was introduced in the 1950s as an elementary quantum field
theory in which mass, wave function, and charge renormalization could be
carried out exactly. In early studies of this model it was found that there is
a critical value of g^2, the square of the renormalized coupling constant,
above which g_0^2, the square of the unrenormalized coupling constant, is
negative. Thus, for g^2 larger than this critical value, the Hamiltonian of the
Lee model becomes non-Hermitian. It was also discovered that in this
non-Hermitian regime a new state appears whose norm is negative. This state is
called a ghost state. It has always been assumed that in this ghost regime the
Lee model is an unacceptable quantum theory because unitarity appears to be
violated. However, in this regime while the Hamiltonian is not Hermitian, it
does possess PT symmetry. It has recently been discovered that a non-Hermitian
Hamiltonian having PT symmetry may define a quantum theory that is unitary. The
proof of unitarity requires the construction of a new time-independent operator
called C. In terms of C one can define a new inner product with respect to
which the norms of the states in the Hilbert space are positive. Furthermore,
it has been shown that time evolution in such a theory is unitary. In this
paper the C operator for the Lee model in the ghost regime is constructed
exactly in the V/N-theta sector. It is then shown that the ghost state has a
positive norm and that the Lee model is an acceptable unitary quantum field
theory for all values of g^2.Comment: 20 pages, 9 figure
Hadronic Contributions to the Photon Vacuum Polarization and their Role in Precision Physics
I review recent evaluations of the hadronic contribution to the shift in the
fine structure constant and to the anomalous magnetic moment of the muon.
Substantial progress in a precise determination of these important observables
is a consequence of substantially improved total cross section measurement by
the CMD-2 and BES II collaborations and an improved theoretical understanding.
Prospects for further possible progress is discussed.Comment: 17 pages 7 figures 2 tables, update: incl. CMD-2 data, reference
Model-independent determination of the parity of hyperons
Based on reflection symmetry in the reaction plane, it is shown that
measuring the transverse spin-transfer coefficient in the reaction directly determines the parity of the produced cascade
hyperon in a model-independent way as , where
is the parity. This result based on Bohr's theorem provides a completely
general, universal relationship that applies to the entire hyperon spectrum. A
similar expression is obtained for the photoreaction by
measuring both the double-polarization observable and the photon-beam
asymmetry . Regarding the feasibility of such experiments, it is
pointed out that the self-analyzing property of the 's can be invoked,
thus requiring only a polarized nucleon target.Comment: 4 pages, REVTeX, to be published in Phys. Rev.
- …