380 research outputs found

    Lehmann-Symanzik-Zimmermann Reduction Approach to Multi-Photon Scattering in Coupled-Resonator Arrays

    Full text link
    We present a quantum field theoretical approach based on the Lehmann-Symanzik-Zimmermann reduction for the multi-photon scattering process in a nano-architecture consisting of the coupled resonator arrays (CRA), which are also coupled to some artificial atoms as the controlling quantum node. By making use of this approach, we find the bound states of single photon for an elementary unit, the T-type CRA, and explicitly obtain its multi-photon scattering S-matrix in various situations. We also use this method to calculate the multi-photon S-matrices for the more complex quantum network constructed with main T-type CRA's, such as a H-type CRA waveguide.Comment: 15 pages, 14 figure

    Local Fields without Restrictions on the Spectrum of 4-Momentum Operator and Relativistic Lindblad Equation

    Full text link
    Quantum theory of Lorentz invariant local scalar fields without restrictions on 4-momentum spectrum is considered. The mass spectrum may be both discrete and continues and the square of mass as well as the energy may be positive or negative. Such fields can exist as part of a hidden matter in the Universe if they interact with ordinary fields very weakly. Generalization of Kallen-Lehmann representation for propagators of these fields is found. The considered generalized fields may violate CPT- invariance. Restrictions on mass-spectrum of CPT-violating fields are found. Local fields that annihilate vacuum state and violate CPT- invariance are constructed in this scope. Correct local relativistic generalization of Lindblad equation for density matrix is written for such fields. This generalization is particulary needed to describe the evolution of quantum system and measurement process in a unique way. Difficulties arising when the field annihilating the vacuum interacts with ordinary fields are discussed.Comment: Latex 23 pages, sent to "Foundations of Physics

    Signature of short distance physics on inflation power spectrum and CMB anisotropy

    Full text link
    The inflaton field responsible for inflation may not be a canonical fundamental scalar. It is possible that the inflaton is a composite of fermions or it may have a decay width. In these cases the standard procedure for calculating the power spectrum is not applicable and a new formalism needs to be developed to determine the effect of short range interactions of the inflaton on the power spectrum and the CMB anisotropy. We develop a general formalism for computing the power spectrum of curvature perturbations for such non-canonical cases by using the flat space K\"all\'en-Lehmann spectral function in curved quasi-de Sitter space assuming implicitly that the Bunch-Davis boundary conditions enforces the inflaton mode functions to be plane wave in the short wavelength limit and a complete set of mode functions exists in quasi-de Sitter space. It is observed that the inflaton with a decay width suppresses the power at large scale while a composite inflaton's power spectrum oscillates at large scales. These observations may be vindicated in the WMAP data and confirmed by future observations with PLANCK.Comment: 17 pages, 4 figures, Extended journal version, Accepted for publication in JCA

    QED effects on individual atomic orbital energies

    Get PDF
    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.Fil: Koziol, Karol. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Aucar, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentin

    Improved α4\alpha^4 Term of the Electron Anomalous Magnetic Moment

    Full text link
    We report a new value of electron g2g-2, or aea_e, from 891 Feynman diagrams of order α4\alpha^4. The FORTRAN codes of 373 diagrams containing closed electron loops have been verified by at least two independent formulations. For the remaining 518 diagrams, which have no closed lepton loop, verification by a second formulation is not yet attempted because of the enormous amount of additional work required. However, these integrals have structures that allow extensive cross-checking as well as detailed comparison with lower-order diagrams through the renormalization procedure. No algebraic error has been uncovered for them. The numerical evaluation of the entire α4\alpha^4 term by the integration routine VEGAS gives 1.7283(35)(α/π)4-1.7283 (35) (\alpha/\pi)^4, where the uncertainty is obtained by careful examination of error estimates by VEGAS. This leads to ae=1159652175.86(0.10)(0.26)(8.48)×1012a_e = 1 159 652 175.86 (0.10) (0.26) (8.48) \times 10^{-12}, where the uncertainties come from the α4\alpha^4 term, the estimated uncertainty of α5\alpha^5 term, and the inverse fine structure constant, α1=137.0360003(10)\alpha^{-1} = 137.036 000 3 (10), measured by atom interferometry combined with a frequency comb technique, respectively. The inverse fine structure constant α1(ae)\alpha^{-1} (a_e) derived from the theory and the Seattle measurement of aea_e is 137.03599883(51)137.035 998 83 (51).Comment: 64 pages and 10 figures. Eq.(16) is corrected. Comments are added after Eq.(40

    Sixth-Order Vacuum-Polarization Contribution to the Lamb Shift of the Muonic Hydrogen

    Full text link
    The sixth-order electron-loop vacuum-polarization contribution to the 2P1/22S1/22P_{1/2} - 2S_{1/2} Lamb shift of the muonic hydrogen (μp+\mu^{-} p^+ bound state) has been evaluated numerically. Our result is 0.007608(1) meV. This eliminates the largest uncertainty in the theoretical calculation. Combined with the proposed precision measurement of the Lamb shift it will lead to a very precise determination of the proton charge radius.Comment: 4 pages, 5 figures the totoal LS number is change

    On V_ud determination from kaon decays

    Get PDF
    The pion beta decay pi^+ -> pi^0 e^+ nu proceeds through pure weak vector hadronic currents and, therefore, the theoretical prediction for it is more reliable than for the processes with axial-vector current contribution. For example, recently the pion beta decay has been used for V_ud determination. The main aim of this letter is to point that kaon beta decay K^0 -> K^+(pi^+ pi^0) e^- nu-bar analogously can be used for this purpose.Comment: 3 pages, no figures, one reference adde

    Ghost Busting: PT-Symmetric Interpretation of the Lee Model

    Full text link
    The Lee model was introduced in the 1950s as an elementary quantum field theory in which mass, wave function, and charge renormalization could be carried out exactly. In early studies of this model it was found that there is a critical value of g^2, the square of the renormalized coupling constant, above which g_0^2, the square of the unrenormalized coupling constant, is negative. Thus, for g^2 larger than this critical value, the Hamiltonian of the Lee model becomes non-Hermitian. It was also discovered that in this non-Hermitian regime a new state appears whose norm is negative. This state is called a ghost state. It has always been assumed that in this ghost regime the Lee model is an unacceptable quantum theory because unitarity appears to be violated. However, in this regime while the Hamiltonian is not Hermitian, it does possess PT symmetry. It has recently been discovered that a non-Hermitian Hamiltonian having PT symmetry may define a quantum theory that is unitary. The proof of unitarity requires the construction of a new time-independent operator called C. In terms of C one can define a new inner product with respect to which the norms of the states in the Hilbert space are positive. Furthermore, it has been shown that time evolution in such a theory is unitary. In this paper the C operator for the Lee model in the ghost regime is constructed exactly in the V/N-theta sector. It is then shown that the ghost state has a positive norm and that the Lee model is an acceptable unitary quantum field theory for all values of g^2.Comment: 20 pages, 9 figure

    Hadronic Contributions to the Photon Vacuum Polarization and their Role in Precision Physics

    Full text link
    I review recent evaluations of the hadronic contribution to the shift in the fine structure constant and to the anomalous magnetic moment of the muon. Substantial progress in a precise determination of these important observables is a consequence of substantially improved total cross section measurement by the CMD-2 and BES II collaborations and an improved theoretical understanding. Prospects for further possible progress is discussed.Comment: 17 pages 7 figures 2 tables, update: incl. CMD-2 data, reference

    Model-independent determination of the parity of Ξ\Xi hyperons

    Get PDF
    Based on reflection symmetry in the reaction plane, it is shown that measuring the transverse spin-transfer coefficient KyyK_{yy} in the KˉNKΞ\bar{K}N \to K\Xi reaction directly determines the parity of the produced cascade hyperon in a model-independent way as πΞ=Kyy\pi_\Xi =K_{yy}, where πΞ=±1\pi_\Xi =\pm 1 is the parity. This result based on Bohr's theorem provides a completely general, universal relationship that applies to the entire hyperon spectrum. A similar expression is obtained for the photoreaction γNKKΞ\gamma N \to K K \Xi by measuring both the double-polarization observable KyyK_{yy} and the photon-beam asymmetry Σ\Sigma. Regarding the feasibility of such experiments, it is pointed out that the self-analyzing property of the Ξ\Xi's can be invoked, thus requiring only a polarized nucleon target.Comment: 4 pages, REVTeX, to be published in Phys. Rev.
    corecore