75 research outputs found

    Diffraction of wave packets in space and time

    Get PDF
    The phenomenon of wave packet diffraction in space and time is described. It consists in a diffraction pattern whose spatial location progresses with time. The pattern is produced by wave packet quantum scattering off an attractive or repulsive time independent potential. An analytical formula for the pattern at tt\to\infty is derived both in one dimension and in three dimensions. The condition for the pattern to exist is developed. The phenomenon is shown numerically and analytically for the Dirac equation in one dimension also. An experiment for the verification of the phenomenon is described and simulated numerically.Comment: replaces quant-ph 0008077, 0008107, Journal of physics, A, in pres

    Single and double slit scattering of wave packets

    Full text link
    The scattering of wave packets from a single slit and a double slit with the Schr\"odinger equation, is studied numerically and theoretically. The phenomenon of diffraction of wave packets in space and time in the backward region, previously found for barriers and wells, is encountered here also. A new phenomenon of forward diffraction that occurs only for packets thiner than the slit, or slits, is calculated numerically as well as, in a theoretical approximation to the problem. This diffraction occurs at the opposite end of the usual diffraction phenomena with monochromatic waves.Comment: Latex format, 35 pages, 15 eps (some colored) figure

    A theorem for the normalization of continuous spectrum stationary states

    Full text link
    We present analytic formulae that simplify the evaluation of the normalization of continuous spectrum stationary states in the one-dimensional Schr\"odinger equation.Comment: Corrected and enlarged version with exampl
    corecore