5 research outputs found

    A study on the behavior of the dissolved oxygen in the shallow coastal wells of Cuddalore District, Tamilnadu, India

    No full text
    Dissolved oxygen content in a water column serves as an indicator of pollution and it indirectly indicates the geochemical nature of the water. An attempt has been made in this study to understand the behavior of Dissolved Oxygen (DO) in eleven open wells along the coast of Cuddalore District, Tamilnadu, South India. Observations were made in situ for DO and Electrical Conductivity (EC) depth wise for 24 hours during a full moon period of every two hours. The study indicates that a definite stratification exists in a certain location and mixing trends in some locations. It also shows that there are fluctuations of these values with time and it has a definite relation at specific location. The temporal and the spatial relationships between EC and DO were also used in an attempt to understand the coastal ecosystem in the natural environment

    Study on the Significance of Temporal Ion Chemistry in Groundwater of Dindigul District, Tamilnadu, India

    No full text
    The demand of water supply is increasing day by day to meet the pace of developments in domestic, agricultural and industrial sectors especially in developing countries like India. Groundwater being a scarce commodity in a hard rock terrain like Dindigul district an attempt has been made in this studybrings out the significance of temporal ion chemistry in groundwater by collecting groundwater from 43 different location of the district and analysed for major and minor ions. These ions were then used for the irrigation classification of groundwater and to bring out the mechanisms responsible ofthe water chemistry of the region during different seasons

    Study on the Significance of Temporal Ion Chemistry in Groundwater of Dindigul District, Tamilnadu, India

    No full text
    Abstract: The demand of water supply is increasing day by day to meet the pace of developments in domestic, agricultural and industrial sectors especially in developing countries like India. Groundwater being a scarce commodity in a hard rock terrain like Dindigul district an attempt has been made in this study brings out the significance of temporal ion chemistry in groundwater by collecting groundwater from 43 different location of the district and analysed for major and minor ions. These ions were then used for the irrigation classification of groundwater and to bring out the mechanisms responsible of the water chemistry of the region during different seasons

    Study on the hydrogeochemical characteristics in groundwater, post- and pre-tsunami scenario,from Portnova to Pumpuhar, southeast coast of India

    No full text
    Natural hazards cause great damage to humankind and the surrounding ecosystem. They can cast certain indelible changes on the natural system. One such tsunami event occurred on 26 December 2004 and caused serious damage to the environment, including deterioration of groundwater quality. This study addresses the groundwater quality variation before and after the tsunami from Pumpuhar to Portnova in Tamil Nadu coast using geochemical methods. As a part of a separate Ph.D. study on the salinity of groundwater from Pondicherry to Velankanni, water quality of this region was studied with the collection of samples during November 2004, which indicated that shallow aquifers were not contaminated by sea water in certain locations. These locations were targeted for post-tsunami sample collection during the months of January, March and August 2005 from shallow aquifers. Significant physical mixing (confirmed with mixing models) within the aquifer occurred during January 2005, followed by precipitation of salts in March and complete leaching and dissolution of these salts in the post monsoon season of August. As a result, maximum impact of tsunami water was observed in August after the onset of monsoon. Tsunami water inundated inland water bodies and topographic lows where it remained stagnant, especially in the near-shore regions. Maximum tsunami inundation occurred along the fluvial distributary channels, and it was accelerated by topography to a certain extent where the southern part of the study area has a gentler bathymetry than the north

    A study on the mixing proportion in groundwater samples by using Piper diagram and Phreeqc model

    No full text
    Piper (1944) diagram has been the basis for several important interpretations of the hydrogeochemical data. As seen in this diagram, most natural waters contain relatively few dissolved constituents, with cations (metals or bases) and anions (acid radicles) in chemical equilibrium with one another. Apart from the facies representation, the composition of the mixed sample can be identified in terms of the composition of the parental solution. To bring out this advantage of the Piper diagram, a study was conducted in the Kalpakkam region of Tamilnadu, South India. By taking the geology and water table into consideration, two sample locations were selected as parent solution and third one as the mixture sample. All three samples were analyzed for calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), chloride (Cl), sulphate (SO4) and phosphate (PO4) by Ion Chromatograph (Metrohm IC 861). HCO3 was determined by volumetric titration. The Piper diagram shows that parent solutions clustered towards Na-Mg-Ca-HCO3-Cl and Na-HCO3 facies, and the mixing sample belongs to Na-Mg-HCO3 facies. Phreeqc interactive (Ver 2.8) along with the original composition of the mixture sample was used to correlate the mixing proportion identified by the Piper diagram
    corecore