62 research outputs found
Effects of electronic correlations and disorder on the thermopower of NaxCoO2
For the thermoelectric properties of NaxCoO2, we analyze the effect of local
Coulomb interaction and (disordered) potential differences for Co-sites with
adjacent Na-ion or vacancy. The disorder potential alone increases the
resistivity and reduces the thermopower, while the Coulomb interaction alone
leads only to minor changes compared to the one-particle picture of the local
density approximation. Only combined, these two terms give rise to a
substantial increase of the thermopower: the number of (quasi-)electrons around
the Fermi level is much more suppressed than that of the (quasi-)holes. Hence,
there is a particle-hole imbalance acting in the same direction as a similar
imbalance for the group velocities. Together, this interplay results in a large
positive thermopower. Introducing a thermoelectric spectral density, we located
the energies and momenta regions most relevant for the thermopower and changes
thereof.Comment: 23 pages, 27 figures, accepted at PR
Coexisting Kondo singlet state with antiferromagnetic long-range order: A possible ground state for Kondo insulators
The ground-state phase diagram of a half-filled anisotropic Kondo lattice
model is calculated within a mean-field theory. For small transverse exchange
coupling , the ground state shows an antiferromagnetic
long-range order with finite staggered magnetizations of both localized spins
and conduction electrons. When , the long-range order
is destroyed and the system is in a disordered Kondo singlet state with a
hybridization gap. Both ground states can describe the low-temperature phases
of Kondo insulating compounds. Between these two distinct phases, there may be
a coexistent regime as a result of the balance between local Kondo screening
and magnetic interactions.Comment: four pages, Revtex, one figure; to be published in Phys. Rev. B, 1
July issue, 200
Indirect and direct energy gaps in the Kondo semiconductor YbB12
Optical conductivity [] of the Kondo semiconductor YbB
has been measured over wide ranges of temperature (=8690 K) and photon
energy ( 1.3 meV). The data reveal the
entire crossover of YbB from a metallic electronic structure at high
into a semiconducting one at low . Associated with the gap development in
, a clear onset is newly found at =15 meV for 20 K. The onset energy is identified as the gap width of YbB
appearing in . This gap in \sigma(\omega)\sigma(\omega)$ is interpreted as arising from the direct gap. The
absorption coefficient around the onset and the mIR peak indeed show
characteristic energy dependences expected for indirect and direct optical
transitions in conventional semiconductors.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp
Evolution of spectral function in a doped Mott insulator : surface vs. bulk contributions
We study the evolution of the spectral function with progressive hole doping
in a Mott insulator, with = 0.0 - 0.5. The spectral
features indicate a bulk-to-surface metal-insulator transition in this system.
Doping dependent changes in the bulk electronic structure are shown to be
incompatible with existing theoretical predictions. An empirical description
based on the single parameter, , is shown to describe consistently the
spectral evolution.Comment: Revtex, 4 pages, 3 postscript figures. To appear in Phys. Rev. Let
Zero-temperature magnetism in the periodic Anderson model in the limit of large dimensions
We study the magnetism in the periodic Anderson model in the limit of large
dimensions by mapping the lattice problem into an equivalent local impurity
self-consistent model. Through a recently introduced algorithm based on the
exact diagonalization of an effective cluster hamiltonian, we obtain solutions
with and without magnetic order in the half-filled case. We find the exact
AFM-PM phase boundary which is shown to be of order and obeys
We calculate the local staggered moments and the
density of states to gain insights on the behavior of the AFM state as it
evolves from itinerant to a local-moment magnetic regimeComment: 9 pages + 9 figures, to appear in Phys. Rev. B, 1 Sept. 1995 issu
Pseudogap Formation and Heavy Carrier Dynamics in Intermediate Valence YbAl3
Infrared optical conductivity [] of the intermediate valence
compound YbAl has been measured at temperatures 8 K 690 K to
study its microscopic electronic structures. Despite the highly metallic
characters of YbAl, exhibits a clear pseudogap (strong
depletion of spectral weight) of about 60 meV below 40 K. It also shows a
strong mid-infrared peak centered at 0.25 eV. Energy-dependent effective
mass and scattering rate of the carriers obtained from the data indicate the
formation of a heavy-mass Fermi liquid state. These characteristic results are
discussed in terms of the hybridization states between the Yb 4 and the
conduction electrons. It is argued, in particular, that the pseudogap and the
mid-infrared peak result from the indirect and the direct gaps, respectively,
within the hybridization state. band.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
Doping induced metal-insulator transition in two-dimensional Hubbard, , and extended Hubbard, , models
We show numerically that the nature of the doping induced metal-insulator
transition in the two-dimensional Hubbard model is radically altered by the
inclusion of a term, , which depends upon a square of a single-particle
nearest-neighbor hopping. This result is reached by computing the localization
length, , in the insulating state. At finite values of we find
results consistent with where is
the critical chemical potential. In contrast, for the Hubbard model. At finite values of , the presented
numerical results imply that doping the antiferromagnetic Mott insulator leads
to a superconductor.Comment: 19 pages (latex) including 7 figures in encapsulated postscript
format. Submitted for publication in Phys. Rev.
The RKKY interactions and the Mott Transition
A two-site cluster generalization of the Hubbard model in large dimensions is
examined in order to study the role of short-range spin correlations near the
metal-insulator transition (MIT). The model is mapped to a two-impurity
Kondo-Anderson model in a self-consistently determined bath, making it possible
to directly address the competition between the Kondo effect and RKKY
interactions in a lattice context. Our results indicate that the RKKY
interactions lead to qualitative modifications of the MIT scenario even in the
absence of long range antiferromagnetic ordering.Comment: 10 pages, 10 figures; to appear in Phys. Rev. B (1999
Anomalous low doping phase of the Hubbard model
We present results of a systematic Quantum-Monte-Carlo study for the
single-band Hubbard model. Thereby we evaluated single-particle spectra (PES &
IPES), two-particle spectra (spin & density correlation functions), and the
dynamical correlation function of suitably defined diagnostic operators, all as
a function of temperature and hole doping. The results allow to identify
different physical regimes. Near half-filling we find an anomalous `Hubbard-I
phase', where the band structure is, up to some minor modifications, consistent
with the Hubbard-I predictions. At lower temperatures, where the spin response
becomes sharp, additional dispersionless `bands' emerge due to the dressing of
electrons/holes with spin excitatons. We present a simple phenomenological fit
which reproduces the band structure of the insulator quantitatively. The Fermi
surface volume in the low doping phase, as derived from the single-particle
spectral function, is not consistent with the Luttinger theorem, but
qualitatively in agreement with the predictions of the Hubbard-I approximation.
The anomalous phase extends up to a hole concentration of 15%, i.e. the
underdoped region in the phase diagram of high-T_c superconductors. We also
investigate the nature of the magnetic ordering transition in the single
particle spectra. We show that the transition to an SDW-like band structure is
not accomplished by the formation of any resolvable `precursor bands', but
rather by a (spectroscopically invisible) band of spin 3/2 quasiparticles. We
discuss implications for the `remnant Fermi surface' in insulating cuprate
compounds and the shadow bands in the doped materials.Comment: RevTex-file, 20 PRB pages, 16 figures included partially as gif. A
full ps-version including ps-figures can be found at
http://theorie.physik.uni-wuerzburg.de/~eder/condmat.ps.gz Hardcopies of
figures (or the entire manuscript) can also be obtained by e-mail request to:
[email protected]
Charge and Spin Structures of a Superconductor in the Proximity of an Antiferromagnetic Mott Insulator
To the Hubbard model on a square lattice we add an interaction, , which
depends upon the square of a near-neighbor hopping. We use zero temperature
quantum Monte Carlo simulations on lattice sizes up to , to show
that at half-filling and constant value of the Hubbard repulsion, the
interaction triggers a quantum transition between an antiferromagnetic Mott
insulator and a superconductor. With a combination of finite
temperature quantum Monte Carlo simulations and the Maximum Entropy method, we
study spin and charge degrees of freedom in the superconducting state. We give
numerical evidence for the occurrence of a finite temperature
Kosterlitz-Thouless transition to the superconducting state.
Above and below the Kosterlitz-Thouless transition temperature, , we
compute the one-electron density of states, , the spin relaxation
rate , as well as the imaginary and real part of the spin susceptibility
. The spin dynamics are characterized by the vanishing of
and divergence of in the low
temperature limit. As is approached develops a pseudo-gap
feature and below shows a peak
at finite frequency.Comment: 46 pages (latex) including 14 figures in encapsulated postscript
format. Submitted for publication in Phys. Rev.
- …