6,248 research outputs found

    Semileptonic B Decays at BABAR

    Full text link
    We present results on semileptonic B decays obtained with the BABAR detector. The large data set accumulated at the PEP-II asymmetric-energy B-Factory allows a new measurement technique, where the hadronic decay of one B meson is fully reconstructed and the semileptonic decay of the recoiling B meson is studied. Traditional analysis techniques of inclusive and exclusive B decays complement this approach with very high statistics data samples. These measurements play an important role in the tests of the description of CP violation in the Standard Model: The determinations of the Cabibbo-Kobayashi-Maskawa matrix elements |Vcb| and |Vub| provide constraints on the unitarity of the CKM triangle. Furthermore, the experimental measurement of parameters of Heavy Quark Effective Theory test the consistency of the theoretical description of semileptonic B decays.Comment: Invited Brief Review, to appear in Modern Physics Letters

    Luminosity Dependent Evolution of Lyman Break Galaxies from redshift 5 to 3

    Get PDF
    In this contribution we briefly describe our recent results on the properties of Lyman break galaxies at z~5 obtained from deep and wide blank field surveys using Subaru telescope, and through the comparison with samples at lower redshift ranges we discuss the evolution of star-forming galaxies in the early universe.Comment: 2 pages, 1 figure, for the proceedings of the IAU Symposium 235, Galaxies Across the Hubble Time, J. Palous & F. Combes, ed

    Non-ergodic transitions in many-body Langevin systems: a method of dynamical system reduction

    Full text link
    We study a non-ergodic transition in a many-body Langevin system. We first derive an equation for the two-point time correlation function of density fluctuations, ignoring the contributions of the third- and fourth-order cumulants. For this equation, with the average density fixed, we find that there is a critical temperature at which the qualitative nature of the trajectories around the trivial solution changes. Using a method of dynamical system reduction around the critical temperature, we simplify the equation for the time correlation function into a two-dimensional ordinary differential equation. Analyzing this differential equation, we demonstrate that a non-ergodic transition occurs at some temperature slightly higher than the critical temperature.Comment: 8 pages, 1 figure; ver.3: Calculation errors have been fixe

    Photoabsorption spectra in the continuum of molecules and atomic clusters

    Get PDF
    We present linear response theories in the continuum capable of describing photoionization spectra and dynamic polarizabilities of finite systems with no spatial symmetry. Our formulations are based on the time-dependent local density approximation with uniform grid representation in the three-dimensional Cartesian coordinate. Effects of the continuum are taken into account either with a Green's function method or with a complex absorbing potential in a real-time method. The two methods are applied to a negatively charged cluster in the spherical jellium model and to some small molecules (silane, acetylene and ethylene).Comment: 13 pages, 9 figure

    CO(J=6-5) Observations of the Quasar SDSS1044-0125 at z = 5.8

    Full text link
    We present a result of the quasar CO(J=6-5) observations of SDSSp J104433.04-012502.2 at z = 5.8. Ten-days observations with the Nobeyama Millimeter Array yielded an rms noise level of ~ 2.1 mJy/beam in a frequency range from 101.28 GHz to 101.99 GHz at a velocity resolution of 120 km/s. No significant clear emission line was detected in the observed field and frequency range. Three sigma upper limit on the CO(J=6-5) luminosity of the object is 2.8 x 10^10 K km/s pc^2, corresponding to a molecular gas mass of 1.2 x 10^11 Solar Mass, if a conversion factor of 4.5 Solar Mass /(K km/s pc^2) is adopted. The obtained upper limit on CO luminosity is slightly smaller than those observed in quasars at z=4-5 toward which CO emissions are detected.Comment: 4 pages, 3 figures, LaTeX2e, to appear in Publication of Astronomical Society of Japan (PASJ), Postscript file available at ftp://ftp.kusastro.kyoto-u.ac.jp/pub/iwata/preprint/sdss1044/sdss.ps.g

    Star Formation at the Twilight of the Dark Ages: Which Stars Reionized the Universe?

    Get PDF
    We calculate the global star formation rate density (SFRD) from z ~ 30-3 using a semi-analytic model incorporating the hierarchical assembly of dark matter halos, gas cooling via atomic hydrogen, star formation, supernova feedback, and suppression of gas collapse in small halos due to the presence of a photoionizing background. We compare the results with the predictions of simpler models based on the rate of dark matter halo growth and a fixed ratio of stellar-to-dark mass, and with observational constraints on the SFRD at 3 < z < 6. We also estimate the star formation rate due to very massive, metal-free Pop III stars using a simple model based on the halo formation rate, calibrated against detailed hydrodynamic simulations of Pop III star formation. We find that the total production rate of hydrogen-ionizing photons during the probable epoch of reionization (15 < z < 20) is approximately equally divided between Pop II and Pop III stars, and that if reionization is late (less than about 15, close to the lower limit of the range allowed by the WMAP results), then Pop II stars alone may be able to reionize the Universe.Comment: submitted to ApJ

    Precise study of asymptotic physics with subradiant ultracold molecules

    Get PDF
    Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subradiant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Here we characterize the properties of deeply subradiant molecular states with intrinsic quality factors exceeding 101310^{13} via precise optical spectroscopy with the longest molecule-light coherent interaction times to date. We find that two competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We prove that its rate increases quadratically with the bond length, confirming quantum mechanical predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges the gap between atomic and molecular metrology based on lattice-clock techniques, yielding new understanding of long-range interatomic interactions and placing ultracold molecules at the forefront of precision measurements.Comment: 12 pages, 6 figure
    • …
    corecore