2,502 research outputs found

    Interplay of strongly correlated electrons and localized Ising moments in one-dimension

    Full text link
    We study the ground state properties of the one-dimensional quarter-filled strongly correlated electronic chain coupled by JJ to another chain of antiferromagnetic Ising moments. We focus on the case where the large Coulomb interactions localize the charges on every other site. Both the electronic spins and the Ising moments interact antiferromagnetically within each chain by JeffJ_{\rm eff} and J′J', respectively. Since the number of electrons is half as that of the Ising moments the period of magnetic correlation of these two chains are incommensurate. In the presence of JJ, the frustration of JeffJ_{\rm eff} and J′J' arises, which may lead the system to the intriguing magneto-electric effect.Comment: 8pages 6figure

    Electric Dipolar Susceptibility of the Anderson-Holstein Model

    Full text link
    The temperature dependence of electric dipolar susceptibility \chi_P is discussed on the basis of the Anderson-Holstein model with the use of a numerical renormalization group (NRG) technique. Note that P is related with phonon Green's function D. In order to obtain correct temperature dependence of P at low temperatures, we propose a method to evaluate P through the Dyson equation from charge susceptibility \chi_c calculated by the NRG, in contrast to the direct NRG calculation of D. We find that the irreducible charge susceptibility estimated from \chi_c agree with the perturbation calculation, suggesting that our method works well.Comment: 4 pages, 4 figure

    Microscopic analysis of multipole susceptibility of actinide dioxides: A scenario of multipole ordering in AmO2_2

    Full text link
    By evaluating multipole susceptibility of a seven-orbital impurity Anderson model with the use of a numerical renormalization group method, we discuss possible multipole states of actinide dioxides at low temperatures. In particular, here we point out a possible scenario for multipole ordering in americium dioxide. For Am4+^{4+} ion with five 5f5f electrons, it is considered that the ground state is Γ7−\Gamma_7^{-} doublet and the first excited state is Γ8−\Gamma_8^{-} quartet, but we remark that the f5f^5 ground state is easily converted due to the competition between spin-orbit coupling and Coulomb interactions. Then, we find that the Γ8−\Gamma_8^- quartet can be the ground state of AmO2_2 even for the same crystalline electric field potential. In the case of Γ8−\Gamma_8^- quartet ground state, the numerical results suggest that high-order multipoles such as quadrupole and octupole can be relevant to AmO2_2.Comment: 8 pages, 4 figures. To appear in Phys. Rev.

    Insulator to Metal Transition Induced by Disorder in a Model for Manganites

    Full text link
    The physics of manganites appears to be dominated by phase competition among ferromagnetic metallic and charge-ordered antiferromagnetic insulating states. Previous investigations (Burgy {\it et al.}, Phys. Rev. Lett. {\bf 87}, 277202 (2001)) have shown that quenched disorder is important to smear the first-order transition between those competing states, and induce nanoscale inhomogeneities that produce the colossal magnetoresistance effect. Recent studies (Motome {\it et al.} Phys. Rev. Lett. {\bf 91}, 167204 (2003)) have provided further evidence that disorder is important in the manganite context, unveiling an unexpected insulator-to-metal transition triggered by disorder in a one-orbital model with cooperative phonons. In this paper, a qualitative explanation for this effect is presented. It is argued that the transition occurs for disorder in the form of local random energies. Acting over an insulating states made out of a checkerboard arrangement of charge, with ``effective'' site energies positive and negative, this form of disorder can produce lattice sites with an effective energy near zero, favorable for the transport of charge. This explanation is based on Monte Carlo simulations and the study of simplified toy models, measuring the density-of-states, cluster conductances using the Landauer formalism, and other observables. The applicability of these ideas to real manganites is discussed.Comment: 14 pages, 23 figures, submitted to Physical Review

    Enhanced Kondo Effect in an Electron System Dynamically Coupled with Local Optical Phonon

    Full text link
    We discuss Kondo behavior of a conduction electron system coupled with local optical phonon by analyzing the Anderson-Holstein model with the use of a numerical renormalization group (NRG) method. There appear three typical regions due to the balance between Coulomb interaction UeeU_{\rm ee} and phonon-mediated attraction UphU_{\rm ph}. For Uee>UphU_{\rm ee}>U_{\rm ph}, we observe the standard Kondo effect concerning spin degree of freedom. Since the Coulomb interaction is effectively reduced as Uee−UphU_{\rm ee}-U_{\rm ph}, the Kondo temperature TKT_{\rm K} is increased when UphU_{\rm ph} is increased. On the other hand, for Uee<UphU_{\rm ee}<U_{\rm ph}, there occurs the Kondo effect concerning charge degree of freedom, since vacant and double occupied states play roles of pseudo-spins. Note that in this case, TKT_{\rm K} is decreased with the increase of UphU_{\rm ph}. Namely, TKT_{\rm K} should be maximized for Uee≈UphU_{\rm ee} \approx U_{\rm ph}. Then, we analyze in detail the Kondo behavior at Uee=UphU_{\rm ee}=U_{\rm ph}, which is found to be explained by the polaron Anderson model with reduced hybridization of polaron and residual repulsive interaction among polarons. By comparing the NRG results of the polaron Anderson model with those of the original Anderson-Holstein model, we clarify the Kondo behavior in the competing region of Uee≈UphU_{\rm ee} \approx U_{\rm ph}.Comment: 8 pages, 8 figure

    Effective Crystalline Electric Field Potential in a j-j Coupling Scheme

    Full text link
    We propose an effective model on the basis of a jj-jj coupling scheme to describe local ff-electron states for realistic values of Coulomb interaction UU and spin-orbit coupling λ\lambda, for future development of microscopic theory of magnetism and superconductivity in fnf^n-electron systems, where nn is the number of local ff electrons. The effective model is systematically constructed by including the effect of a crystalline electric field (CEF) potential in the perturbation expansion in terms of 1/λ1/\lambda. In this paper, we collect all the terms up to the first order of 1/λ1/\lambda. Solving the effective model, we show the results of the CEF states for each case of nn=2∼\sim5 with OhO_{\rm h} symmetry in comparison with those of the Stevens Hamiltonian for the weak CEF. In particular, we carefully discuss the CEF energy levels in an intermediate coupling region with λ/U\lambda/U in the order of 0.1 corresponding to actual ff-electron materials between the LSLS and jj-jj coupling schemes. Note that the relevant energy scale of UU is the Hund's rule interaction. It is found that the CEF energy levels in the intermediate coupling region can be quantitatively reproduced by our modified jj-jj coupling scheme, when we correctly take into account the corrections in the order of 1/λ1/\lambda in addition to the CEF terms and Coulomb interactions which remain in the limit of λ\lambda=∞\infty. As an application of the modified jj-jj coupling scheme, we discuss the CEF energy levels of filled skutterudites with ThT_{\rm h} symmetry.Comment: 12 pages, 7 figures. Typeset with jpsj2.cl

    New possibility of the ground state of quarter-filled one-dimensional strongly correlated electronic system interacting with localized spins

    Full text link
    We study numerically the ground state properties of the one-dimensional quarter-filled strongly correlated electronic system interacting antiferromagnetically with localized S=1/2S=1/2 spins. It is shown that the charge-ordered state is significantly stabilized by the introduction of relatively small coupling with the localized spins. When the coupling becomes large the spin and charge degrees of freedom behave quite independently and the ferromagnetism is realized. Moreover, the coexistence of ferromagnetism with charge order is seen under strong electronic interaction. Our results suggest that such charge order can be easily controlled by the magnetic field, which possibly give rise to the giant negative magnetoresistance, and its relation to phthalocyanine compounds is discussed.Comment: 5pages, 4figure

    Designing Dirac points in two-dimensional lattices

    Full text link
    We present a framework to elucidate the existence of accidental contacts of energy bands, particularly those called Dirac points which are the point contacts with linear energy dispersions in their vicinity. A generalized von-Neumann-Wigner theorem we propose here gives the number of constraints on the lattice necessary to have contacts without fine tuning of lattice parameters. By counting this number, one could quest for the candidate of Dirac systems without solving the secular equation. The constraints can be provided by any kinds of symmetry present in the system. The theory also enables the analytical determination of k-point having accidental contact by selectively picking up only the degenerate solution of the secular equation. By using these frameworks, we demonstrate that the Dirac points are feasible in various two-dimensional lattices, e.g. the anisotropic Kagome lattice under inversion symmetry is found to have contacts over the whole lattice parameter space. Spin-dependent cases, such as the spin-density-wave state in LaOFeAs with reflection symmetry, are also dealt with in the present scheme.Comment: 15pages, 9figures (accepted to Phys. Rev. B
    • …
    corecore