589 research outputs found
Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations
Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include
Recommended from our members
Effects of vortex-vortex interactions on ion-track pinning in high T{sub c} superconductors
Many superconductor applications rely on the ability to pin vortex lattices. This ability depends on structural defects to pin individual vortices, but vortex-vortex interactions often play an important role in pinning the other vortices. Experimental progress on this complex problem can be made by introducing random arrays of well-defined pinning centers and studying the flux dynamics for a range of vortex densities (i.e., fields). Results of such studies in epitaxial Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub y} films containing ion tracks show the importance of vortex-vortex interactions. As an example, the effective pinning field of the defects rises to many times the ion-dose field for temperatures well below {Tc}
Editorial: emerging issues in sociotechnical systems thinking and workplace safety
The burden of on-the-job accidents and fatalities and the harm of associated human suffering continue to present an important challenge for safety researchers and practitioners. While significant improvements have been achieved in recent decades, the workplace accident rate remains unacceptably high. This has spurred interest in the development of novel
research approaches, with particular interest in the systemic influences of social/organisational and technological factors. In response, the Hopkinton Conference on Sociotechnical Systems and Safety was organised to assess the current state of knowledge in the area and to identify research priorities. Over the course of several months prior to the conference, leading international experts drafted collaborative, state-of-the-art reviews covering various aspects of sociotechnical systems and safety. These papers, presented in this special issue, cover topics ranging from the identification of key concepts and definitions to sociotechnical characteristics of safe and unsafe organisations. This paper provides an overview of the conference and introduces key themes and topics.
Practitioner Summary: Sociotechnical approaches to workplace safety are intended to draw practitioners’ attention to the critical influence that systemic social/organisational and technological factors exert on safety-relevant outcomes. This paper introduces major themes addressed in the Hopkinton Conference within the context of current workplace safety research and
practice challenge
Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve.
Theory of the c-Axis Penetration Depth in the Cuprates
Recent measurements of the London penetration depth tensor in the cuprates
find a weak temperature dependence along the c-direction which is seemingly
inconsistent with evidence for d-wave pairing deduced from in-plane
measurements. We demonstrate in this paper that these disparate results are not
in contradiction, but can be explained within a theory based on incoherent
quasiparticle hopping between the CuO2 layers. By relating the calculated
temperature dependence of the penetration depth \lambda_c(T) to the c-axis
resistivity, we show how the measured ratio \lambda_c^2(0) / \lambda_c^2(T) can
provide insight into the behavior of c-axis transport below Tc and the related
issue of ``confinement.''Comment: 4 pages, REVTEX with psfig, 3 PostScript figures included in
compressed for
Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL
We performed sensitive polymerase chain reaction-based minimal residual
disease (MRD) analyses on bone marrow samples at 9 follow-up time points
in 71 children with T-lineage acute lymphoblastic leukemia (T-ALL) and
compared the results with the precursor B-lineage ALL (B-ALL) results (n =
210) of our previous study. At the first 5 follow-up time points, the
frequency of MRD-positive patients and the MRD levels were higher in T-ALL
than in precursor-B-ALL, reflecting the more frequent occurrence of
resistant disease in T-ALL. Subsequently, patients were classified
according to their MRD level at time point 1 (TP1), taken at the end of
induction treatment (5 weeks), and at TP2 just before the start of
consolidation treatment (3 months). Patients were considered at low risk
if TP1 and TP2 were MRD negative and at high risk if MRD levels at TP1 and
TP2 were 10(-3) or higher; remaining patients were considered at
intermediate risk. The relative distribution of patients with T-ALL (n =
43) over the MRD-based risk groups differed significantly from that of
precursor B-ALL (n = 109). Twenty-three percent of patients with T-ALL and
46% of patients with precursor B-ALL were classified in the low-risk group
(P =.01) and had a 5-year relapse-free survival (RFS) rate of 98% or
greater. In contrast, 28% of patients with T-ALL were classified in the
MRD-based high-risk group compared to only 11% of patients with precursor
B-ALL (P =.02), and the RFS rates were 0% and 25%, respectively (P =.03).
Not only was the distribution of patients with T-ALL different over the
MRD-based risk groups, the prognostic value of MRD levels at TP1 and TP2
was higher in T-ALL (larger RFS gradient), and consistently higher RFS
rates were found for MRD-negative T-ALL patients at the first 5 follow-up
time points
Normal-superconducting transition induced by high current densities in YBa2Cu3O7-d melt-textured samples and thin films: Similarities and differences
Current-voltage characteristics of top seeded melt-textured YBa2Cu3O7-d are
presented. The samples were cut out of centimetric monoliths. Films
characteristics were also measured on microbridges patterned on thin films
grown by dc sputtering. For both types of samples, a quasi-discontinuity or
quenching was observed for a current density J* several times the critical
current density Jc. Though films and bulks much differ in their magnitude of
both Jc and J*, a proposal is made as to a common intrinsic origin of the
quenching phenomenon. The unique temperature dependence observed for the ratio
J*/Jc, as well as the explanation of the pre-quenching regime in terms of a
single dissipation model lend support to our proposal.Comment: 10 pages, 10 figures, submitted to Physical Review
- …