1,591 research outputs found
Hamiltonian approach to QCD in Coulomb gauge - a survey of recent results
I report on recent results obtained within the Hamiltonian approach to QCD in
Coulomb gauge. Furthermore this approach is compared to recent lattice data,
which were obtained by an alternative gauge fixing method and which show an
improved agreement with the continuum results. By relating the Gribov
confinement scenario to the center vortex picture of confinement it is shown
that the Coulomb string tension is tied to the spatial string tension. For the
quark sector a vacuum wave functional is used which explicitly contains the
coupling of the quarks to the transverse gluons and which results in
variational equations which are free of ultraviolet divergences. The
variational approach is extended to finite temperatures by compactifying a
spatial dimension. The effective potential of the Polyakov loop is evaluated
from the zero-temperature variational solution. For pure Yang--Mills theory,
the deconfinement phase transition is found to be second order for SU(2) and
first order for SU(3), in agreement with the lattice results. The corresponding
critical temperatures are found to be and , respectively. When quarks are included, the deconfinement
transition turns into a cross-over. From the dual and chiral quark condensate
one finds pseudo-critical temperatures of and , respectively, for the deconfinement and chiral transition.Comment: Talk given by H. Reinhardt at "5th Winter Workshop on
Non-Perturbative Quantum Field Theory", 22-24 March 2017, Sophia-Antipolis,
France. arXiv admin note: text overlap with arXiv:1609.09370,
arXiv:1510.03286, arXiv:1607.0814
Microscopic theories for cubic and tetrahedral superconductors: application to PrOs_4Sb_{12}
We examine weak-coupling theory for unconventional superconducting states of
cubic or tetrahedral symmetry for arbitrary order parameters and Fermi surfaces
and identify the stable states in zero applied field. We further examine the
possibility of having multiple superconducting transitions arising from the
weak breaking of a higher symmetry group to cubic or tetrahedral symmetry.
Specifically, we consider two higher symmetry groups. The first is a weak
crystal field theory in which the spin-singlet Cooper pairs have an approximate
spherical symmetry. The second is a weak spin orbit coupling theory for which
spin-triplet Cooper pairs have a cubic orbital symmetry and an approximate
spherical spin rotational symmetry. In hexagonal UPt_3, these theories easily
give rise to multiple transitions. However, we find that for cubic materials,
there is only one case in which two superconducting transitions occur within
weak coupling theory. This sequence of transitions does not agree with the
observed properties of PrOs_4Sb_{12}. Consequently, we find that to explain two
transitions in PrOs_4Sb_{12} using approximate higher symmetry groups requires
a strong coupling theory. In view of this, we finally consider a weak coupling
theory for which two singlet representations have accidentally nearly
degenerate transition temperatures (not due to any approximate symmetries). We
provide an example of such a theory that agrees with the observed properties of
PrOs_4Sb_{12}.Comment: 11 pages,1 figur
Chiral Correction to the Spin Fluctuation Feedback in two-dimensional p-wave Superconductors
We consider the stability of the superconducting phase for spin-triplet
p-wave pairing in a quasi-two-dimensional system. We show that in the absence
of spin-orbit coupling there is a chiral contribution to spin fluctuation
feedback which is related to spin quantum Hall effect in a chiral
superconducting phase. We show that this mechanism supports the stability of a
chiral p-wave state.Comment: 8 pages. The final version is accepted for publication in Europhys
Let
Imaging Three Dimensional Two-particle Correlations for Heavy-Ion Reaction Studies
We report an extension of the source imaging method for analyzing
three-dimensional sources from three-dimensional correlations. Our technique
consists of expanding the correlation data and the underlying source function
in spherical harmonics and inverting the resulting system of one-dimensional
integral equations. With this strategy, we can image the source function
quickly, even with the finely binned data sets common in three-dimensional
analyses.Comment: 13 pages, 11 figures, submitted to Physical Review
Delay-based AIMD congestion control
Our interest in the paper is investigating whether it
is feasible to make modifications to the TCP congestion control algorithm to achieve greater decoupling between the performance of TCP and the level of buffer provisioning in the network. In this paper we propose a new family of delay-based congestion control algorithms that we refer to as delay-based AIMD
Field-induced coupled superconductivity and spin density wave order in the Heavy Fermion compound CeCoIn5
The high field superconducting state in CeCoIn5 has been studied by
transverse field muon spin rotation measurements with an applied field parallel
to the crystallographic c-axis close to the upper critical field Hc2 = 4.97 T.
At magnetic fields >= 4.8 T the muon Knight shift is enhanced and the
superconducting transition changes from second order towards first order as
predicted for Pauli-limited superconductors. The field and temperature
dependence of the transverse muon spin relaxation rate sigma reveal
paramagnetic spin fluctuations in the field regime from 2 T < H < 4.8 T. In the
normal state close to Hc2 correlated spin fluctuations as described by the self
consistent renormalization theory are observed. The results support the
formation of a mode-coupled superconducting and antiferromagnetically ordered
phase in CeCoIn5 for H directed parallel to the c-axis.Comment: 5 paes, 4 figure
- …