1,591 research outputs found

    Hamiltonian approach to QCD in Coulomb gauge - a survey of recent results

    Get PDF
    I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. Furthermore this approach is compared to recent lattice data, which were obtained by an alternative gauge fixing method and which show an improved agreement with the continuum results. By relating the Gribov confinement scenario to the center vortex picture of confinement it is shown that the Coulomb string tension is tied to the spatial string tension. For the quark sector a vacuum wave functional is used which explicitly contains the coupling of the quarks to the transverse gluons and which results in variational equations which are free of ultraviolet divergences. The variational approach is extended to finite temperatures by compactifying a spatial dimension. The effective potential of the Polyakov loop is evaluated from the zero-temperature variational solution. For pure Yang--Mills theory, the deconfinement phase transition is found to be second order for SU(2) and first order for SU(3), in agreement with the lattice results. The corresponding critical temperatures are found to be 275MeV275 \, \mathrm{MeV} and 280MeV280 \, \mathrm{MeV}, respectively. When quarks are included, the deconfinement transition turns into a cross-over. From the dual and chiral quark condensate one finds pseudo-critical temperatures of 198MeV198 \, \mathrm{MeV} and 170MeV170 \, \mathrm{MeV}, respectively, for the deconfinement and chiral transition.Comment: Talk given by H. Reinhardt at "5th Winter Workshop on Non-Perturbative Quantum Field Theory", 22-24 March 2017, Sophia-Antipolis, France. arXiv admin note: text overlap with arXiv:1609.09370, arXiv:1510.03286, arXiv:1607.0814

    Microscopic theories for cubic and tetrahedral superconductors: application to PrOs_4Sb_{12}

    Full text link
    We examine weak-coupling theory for unconventional superconducting states of cubic or tetrahedral symmetry for arbitrary order parameters and Fermi surfaces and identify the stable states in zero applied field. We further examine the possibility of having multiple superconducting transitions arising from the weak breaking of a higher symmetry group to cubic or tetrahedral symmetry. Specifically, we consider two higher symmetry groups. The first is a weak crystal field theory in which the spin-singlet Cooper pairs have an approximate spherical symmetry. The second is a weak spin orbit coupling theory for which spin-triplet Cooper pairs have a cubic orbital symmetry and an approximate spherical spin rotational symmetry. In hexagonal UPt_3, these theories easily give rise to multiple transitions. However, we find that for cubic materials, there is only one case in which two superconducting transitions occur within weak coupling theory. This sequence of transitions does not agree with the observed properties of PrOs_4Sb_{12}. Consequently, we find that to explain two transitions in PrOs_4Sb_{12} using approximate higher symmetry groups requires a strong coupling theory. In view of this, we finally consider a weak coupling theory for which two singlet representations have accidentally nearly degenerate transition temperatures (not due to any approximate symmetries). We provide an example of such a theory that agrees with the observed properties of PrOs_4Sb_{12}.Comment: 11 pages,1 figur

    Chiral Correction to the Spin Fluctuation Feedback in two-dimensional p-wave Superconductors

    Full text link
    We consider the stability of the superconducting phase for spin-triplet p-wave pairing in a quasi-two-dimensional system. We show that in the absence of spin-orbit coupling there is a chiral contribution to spin fluctuation feedback which is related to spin quantum Hall effect in a chiral superconducting phase. We show that this mechanism supports the stability of a chiral p-wave state.Comment: 8 pages. The final version is accepted for publication in Europhys Let

    Imaging Three Dimensional Two-particle Correlations for Heavy-Ion Reaction Studies

    Full text link
    We report an extension of the source imaging method for analyzing three-dimensional sources from three-dimensional correlations. Our technique consists of expanding the correlation data and the underlying source function in spherical harmonics and inverting the resulting system of one-dimensional integral equations. With this strategy, we can image the source function quickly, even with the finely binned data sets common in three-dimensional analyses.Comment: 13 pages, 11 figures, submitted to Physical Review

    Delay-based AIMD congestion control

    Get PDF
    Our interest in the paper is investigating whether it is feasible to make modifications to the TCP congestion control algorithm to achieve greater decoupling between the performance of TCP and the level of buffer provisioning in the network. In this paper we propose a new family of delay-based congestion control algorithms that we refer to as delay-based AIMD

    Field-induced coupled superconductivity and spin density wave order in the Heavy Fermion compound CeCoIn5

    Full text link
    The high field superconducting state in CeCoIn5 has been studied by transverse field muon spin rotation measurements with an applied field parallel to the crystallographic c-axis close to the upper critical field Hc2 = 4.97 T. At magnetic fields >= 4.8 T the muon Knight shift is enhanced and the superconducting transition changes from second order towards first order as predicted for Pauli-limited superconductors. The field and temperature dependence of the transverse muon spin relaxation rate sigma reveal paramagnetic spin fluctuations in the field regime from 2 T < H < 4.8 T. In the normal state close to Hc2 correlated spin fluctuations as described by the self consistent renormalization theory are observed. The results support the formation of a mode-coupled superconducting and antiferromagnetically ordered phase in CeCoIn5 for H directed parallel to the c-axis.Comment: 5 paes, 4 figure
    corecore