40 research outputs found
CONFINEMENT IN RELATIVISTIC POTENTIAL MODELS
In relativistic potential models of quarkonia based on a Dirac-type of
equation with a local potential there is a sharp distinction between a linear
potential V which is vector-like and one which is scalar-like: There are
normalizable solutions for a scalar-like V but not for a vector-like V. It is
pointed out that if instead one uses an equation of the no-pair type, which is
more natural from the viewpoint of field theory, this somewhat bizarre
difference disappears.Comment: LaTeX, 4 page
On the validity of the reduced Salpeter equation
We adapt a general method to solve both the full and reduced Salpeter
equations and systematically explore the conditions under which these two
equations give equivalent results in meson dynamics. The effects of constituent
mass, angular momentum state, type of interaction, and the nature of
confinement are all considered in an effort to clearly delineate the range of
validity of the reduced Salpeter approximations. We find that for
the solutions are strikingly similar for all
constituent masses. For zero angular momentum states the full and reduced
Salpeter equations give different results for small quark mass especially with
a large additive constant coordinate space potential. We also show that
corrections to heavy-light energy levels can be accurately
computed with the reduced equation.Comment: Latex (uses epsf macro), 24 pages of text, 12 postscript figures
included. Slightly revised version, to appear in Phys. Rev.
A Variational Approach to the Spinless Relativistic Coulomb Problem
By application of a straightforward variational procedure we derive a simple,
analytic upper bound on the ground-state energy eigenvalue of a
semirelativistic Hamiltonian for (one or two) spinless particles which
experience some Coulomb-type interaction.Comment: 7 pages, HEPHY-PUB 606/9
Observations On the Potential Confinement of a Light Fermion
We consider possible dynamical models for a light fermion confined by a
potential field. With the Dirac equation only Lorentz scalar confinement yields
normalizable wavefunctions, while with the ``no pair'' variant of the Dirac
equation only Lorentz vector confinement has normal Regge behaviour.
A systematic investigation of Regge properties and phenomenological
properties is carried out, including calculations of the Isgur-Wise function.
We point out that the Isgur-Wise function provides a sensitive test of
confinement models. In particular, the slope of the IW function at zero recoil
point is found to be for the Dirac equation with scalar
confinement, and for the no pair equation with vector
confinement. Using heavy-light data alone we argue against scalar confinement.Comment: Latex (uses epsf macro), 25 pages of text, 12 postscript figures
included. One reference is added and some typos are fixe
Exact two-particle eigenstates in partially reduced QED
We consider a reformulation of QED in which covariant Green functions are
used to solve for the electromagnetic field in terms of the fermion fields. It
is shown that exact few-fermion eigenstates of the resulting Hamiltonian can be
obtained in the canonical equal-time formalism for the case where there are no
free photons. These eigenstates lead to two- and three-body Dirac-like
equations with electromagnetic interactions. Perturbative and some numerical
solutions of the two-body equations are presented for positronium and
muonium-like systems, for various strengths of the coupling.Comment: 33 pages, LaTex 2.09, 4 figures in EPS forma
Semi-leptonic B decays into higher charmed resonances
We apply HQET to semi-leptonic meson decays into a variety of excited
charm states. Using three realistic meson models with fermionic light degrees
of freedom, we examine the extent that the sum of exclusive single charmed
states account for the inclusive semi-leptonic decay rate. The consistency
of form factors with the Bjorken and Voloshin sum rules is also investigated.Comment: Latex, 27 pages. A few references and errors corrected, to appear in
Phys. Rev.
Relativistic Coulomb Problem: Analytic Upper Bounds on Energy Levels
The spinless relativistic Coulomb problem is the bound-state problem for the
spinless Salpeter equation (a standard approximation to the Bethe--Salpeter
formalism as well as the most simple generalization of the nonrelativistic
Schr\"odinger formalism towards incorporation of relativistic effects) with the
Coulomb interaction potential (the static limit of the exchange of some
massless bosons, as present in unbroken gauge theories). The nonlocal nature of
the Hamiltonian encountered here, however, renders extremely difficult to
obtain rigorous analytic statements on the corresponding solutions. In view of
this rather unsatisfactory state of affairs, we derive (sets of) analytic upper
bounds on the involved energy eigenvalues.Comment: 12 pages, LaTe
Application of Jain and Munczek's bound-state approach to gamma gamma-processes of pi0, eta_c and eta_b
We point out the problems affecting most quark--antiquark bound state
approaches when they are faced with the electromagnetic processes dominated by
Abelian axial anomaly. However, these problems are resolved in the consistently
coupled Schwinger-Dyson and Bethe-Salpeter approach. Using one of the most
successful variants of this approach, we find the dynamically dressed
propagators of the light u and d quarks, as well as the heavy c and b quarks,
and find the Bethe-Salpeter amplitudes for their bound states pi0, eta_c and
\eta_b. Thanks to incorporating the dynamical chiral symmetry breaking, the
pion simultaneously appears as the (pseudo)Goldstone boson. We give the
theoretical predictions for the gamma-gamma decay widths of pi0, eta_c and
eta_b, and for the pi0 gamma* -> gamma transition form factor, and compare them
with experiment. In the chiral limit, the axial-anomaly result for
pi0->gamma-gamma is reproduced analytically in the consistently coupled
Schwinger-Dyson and Bethe-Salpeter approach, provided that the quark-photon
vertex is dressed consistently with the quark propagator, so that the vector
Ward-Takahashi identity of QED is obeyed. On the other hand, the present
approach is also capable of quantitatively describing systems of heavy quarks,
concretely eta_c and possibly eta_b, and their gamma-gamma decays. We discuss
the reasons for the broad phenomenological success of the bound-state approach
of Jain and Munczek.Comment: RevTeX, 37 pages, 7 eps figures, submitted to Int. J. Mod. Phys.
Radiative decays: a new flavour filter
Radiative decays of the orbital excitations of the ,
and to the scalars , and are shown to
provide a flavour filter, clarifying the extent of glueball mixing in the
scalar states. A complementary approach to the latter is provided by the
radiative decays of the scalar mesons to the ground-state vectors ,
and . Discrimination among different mixing scenarios is strong.Comment: 12 pages, 1 table, 0 figure
On quark confinement dynamics
Starting from Buchm\"uller's observation that a chromoelectric flux tube
meson will exhibit only the Thomas type spin-orbit interaction, we show that a
model built upon the related assumption that a quark feels only a constant
radial chromoelectric field in its rest frame implies a complete relativistic
effective Hamiltonian that can be written explicitly in terms of quark
canonical variables. The model yields linear Regge trajectories and exhibits
some similarities to scalar confinement, but with the advantage of being more
closely linked to QCD.Comment: 12 pages, LaTeX 2.09, uses RevTeX and AMSfonts. To be published in
Phys Rev