29 research outputs found

    CD39, NTPDase 1, is attached to the plasma membrane by two transmembrane domains. Why?

    Get PDF
    Since the identification of CD39 and other members of the e-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) family as the primary enzymes responsible for cell surface nucleotide hydrolysis, one of their most intriguing features has been their unusual topology. The active site lies in the large extracellular region, but instead of being anchored in the membrane by a single transmembrane domain or lipid link like other ectoenzymes, CD39 has two transmembrane domains, one at each end. In this review we discuss evidence that the structure and dynamics of the transmembrane helices are intricately connected to enzymatic function. Removal of either or both transmembrane domains or disruption of their native state by detergent solubilization reduces activity by 90%, indicating that native function requires both transmembrane domains to be present and in the membrane. Enzymatic and mutational analysis of the native and truncated forms has shown that the active site can exist in distinct functional states characterized by different total activities, substrate specificities, hydrolysis mechanisms, and intermediate ADP release during ATP hydrolysis, depending on the state of the transmembrane domains. Disulfide crosslinking of cysteines introduced within the transmembrane helices revealed that they interact within and between molecules, in particular near the extracellular domain, and that activity depends on their organization. Both helices exhibit a high degree of rotational mobility, and the ability to undergo dynamic motions is required for activity and regulated by substrate binding. Recent reports suggest that membrane composition can regulate NTPDase activity. We propose that mechanical bilayer properties, potentially elasticity, might regulate CD39 by altering the balance between stability and mobility of its transmembrane domains

    Identification of a tyrosine residue responsible for N-acetylimidazole-induced increase of activity of ecto-nucleoside triphosphate diphosphohydrolase 3

    Get PDF
    Chemical modification in combination with site-directed mutagenesis was used to identify a tyrosine residue responsible for the increase in ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) nucleotidase activity after acetylation with a tyrosine-selective reagent, N-acetylimidazole. The NTPDase3 ATPase activity is increased more than the ADPase activity by this reagent. Several fairly well conserved tyrosine residues (252, 255, and 262) that are located in or very near apyrase conserved region 4a (ACR4a) were mutated. These mutants were all active, but mutation of tyrosine 252 to either alanine or phenylalanine eliminated the activity increase observed after N-acetylimidazole treatment of the wild-type enzyme. This suggests that the acetylation of tyrosine 252 is responsible for the increased activity. Stabilization of quaternary structure has resulted in increased enzyme activities for the NTPDases. However, mutation of these three tyrosine residues did not result in global changes of tertiary or quaternary structure, as measured by Cibacron blue binding, chemical cross linking, and native gel electrophoretic analysis. Nevertheless, disruption of the oligomeric structure with the detergent Triton X-100 abolished the increase in activity induced by this reagent. In addition, mutations that abolished the N-acetylimidazole effect also attenuated the increases of enzyme activity observed after lectin and chemical cross-linking treatments, which were previously attributed to stabilization of the quaternary structure. Thus, we speculate that the acetylation of tyrosine 252 might induce a subtle conformational change in NTPDase3, resulting in the observed increase in activity

    Interactions between the transmembrane domains of CD39: identification of interacting residues by yeast selection.

    No full text
    corecore