86 research outputs found

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Real-time Detection and Tandem Mass Spectrometry of Secondary Organic Aerosols with a Quadrupole Ion Trap

    No full text
    An aerosol quadrupole ion trap mass spectrometer is reported that is sensitive, has unique capabilities to perform chemical ionization, is operated in real-time, and is able to perform tandem mass spectrometry. The instrument samples particles with an aerodynamic lens and volatilizes them within the heated ion trap electrode assembly. Analyte molecules are ionized within the ion trap by proton transfer from reagent ions, and resultant fragmentation is reduced compared to vacuum UV photoionization. Particle concentrations can be detected linearly over two orders of magnitude and as low as 5 μg/m3. To demonstrate the real-time analysis capability of the instrument, secondary organic aerosol particles were produced by reaction of 100 ppb α-pinene and 200 ppb ozone in an aerosol bag and observed in real-time to monitor the progress of the reaction. Pinic acid and pinonic acid are two of the many components of the secondary aerosol mixture that form and gradually decrease in concentration. Individual concentrations are calculated using pinic acid as an internal standard and vary from 4-36 ppb. The identities of analyte ions from both compounds are confirmed by tandem mass spectrometry in real-time
    corecore