127 research outputs found
GGPSA: A GRAPHICS USER INTERFACE TO FILTER MOVEMENT ANALYSIS DATA
Data filtering is a challenging procedure for the biomechanics scientists. It is however a fundamental part of biomechanical analysis when higher derivatives are needed to examine the movement. We present graphics user interface software specially designed to help biomechanics lecturers and students. It is openly designed to provide a powerful tool that could also be used for research purposes. Manual and automatic filtering procedures are provided along with single or batch processing of files. The program can process exported ASCII data files but also can be linked with the well-known APAS movement analysis program and read its binary files. Future work includes processing of many other binary files from other motion analysis systems
The influence of acute variable resistance loading on subsequent free-weight maximal squat performance
Elastic bands attached to a loaded barbell during a squat exercise create a variable resistance (VR), thus changing the mechanical loading and stress placed through the musculoskeletal system. Preconditioning the neuromuscular system using near-maximal or maximal voluntary contractions (MVC) can induce a phenomenon known as post-activation potentiation (PAP) to enhance performance to ‘supramaximal’ levels. However, the potentiating effects of VR on subsequent free-weight resistance (FWR) squat performance have not been examined. Thus, the aim of the present study was to examine the influence of VR exercise using elastic bands on subsequent FWR squat performance. Sixteen recreationally active men (age = 26.0 ± 7.8 yr, height = 1.7 ± 0.2 m, mass 82.6 ± 12.7 kg) experienced in squatting (>3yr) volunteered for the study after giving written informed consent; ethical approval was granted from the University of Northampton. Subjects’ 1-RM were determined then on two subsequent days either a 3-RM FWR (control) or a 3-RM VR (experimental) squat exercise was performed at 85% 1-RM (35% of the load generated from band tension in the VR condition). Five minutes later, motion analysis recorded knee joint kinematics during a subsequent FWR 1-RM squat, with vastus medialis, vastus lateralis, rectus femoris and semitendinosus electromyograms (EMG) simultaneously recorded. Paired t-tests were used to determine significance, accepted at p0.05) or EMG amplitude (5.9%; p>0.05) occurred. No subjects increased 1-RM in the FWR condition, however 13 of 16 (81%) increased 1-RM by ~10% following VR. Preconditioning the neuromuscular system using VR significantly increased 1-RM without changes in knee extensor muscle activity or knee flexion angle, however eccentric and concentric velocities were reduced. Thus, VR can potentiate the neuromuscular system to enhance subsequent maximal lifting performance. The lack of change in EMG suggests that changes in muscle activity were small or non-existent, which may be explained by force-velocity effects (slower movement = larger forces). Alternatively a greater activation of hip musculature (not measured in the present study) may allow a greater total lower limb force to be developed. Regardless, as 1-RM increased greater lower-limb loading occurred, thus VR potentiated the neuromuscular system and could enhance training stimuli
ISOKINETIC PEAK POWER AND PREDICTION OF PERFORMANCE
The purpose of the present study was to examine the relationship between joint peak power during isokinetic concentric knee extension and during squat vertical jump performed on a Kistler force plate. Kjnematic data from both tests were colleded. Peak power was measured as the product of angular velocity and moment at the knee joint in both tests. Rank order correlations revealed that there is no relationship between the two tests concerning the peak power output at the knee joint. It was concluded that isolated joint isokinetic tests cannot be used to predict functional performance because of the differences in muscle and joint fundion characteristics during the different movements
Analysis of lower limb internal kinetics and electromyography in elite race walking.
The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles
The Impact of Heat Exposure on the Health and Performance of Soccer Players: A Narrative Review and Bibliometric Analysis
The impact of heat exposure on the health and performance of soccer players is a widely discussed topic. The purpose of this study is to provide a comprehensive overview of the international literature that has addressed this issue. To achieve this objective, we initially conducted a bibliometric analysis and a literature review of the main topics that emerged through bibliometric techniques. For the bibliometric analysis, we employed VOSviewer software (version 1.6.20.0) and used documents found in the Scopus database. The analysis ultimately included 133 documents published in 66 sources. Key journals and authors were identified, highlighting significant contributions to the field. Science mapping revealed collaboration networks and research focus areas such as physical health, safety, soccer performance, dehydration and hydration, physiological mechanisms and monitoring, nutrition, fluid intake, and cooling techniques. Based on the key areas highlighted in the identified clusters, which emerged from the co-occurrence analysis of the author keywords, the following three topics were developed in the literature review: (a) the physiology and health of football players; (b) performance impacts; and (c) strategies to prevent negative consequences. The review showed that high heat exposure can reduce the physical and cognitive performance of athletes and prove detrimental to their health. To mitigate the negative consequences, appropriate hydration strategies, heat acclimatization, and cooling techniques have been proposed. Our findings provide the international scientific community with comprehensive knowledge of the existing literature, laying the foundation for future research while simultaneously offering coaches and athletes the necessary theoretical knowledge to help improve safety and performance
The influence of chain-loaded resistance on subsequent 1-RM free-weight squat performance
Varying the load during a back squat exercise using chains in combination with free-weight resistance (FWR) will manipulate the loading characteristics of the lift. Consequently, this may alter neuromuscular demand and induce post-activation potentiation (PAP). Preconditioning the muscle using near maximal or maximal voluntary contractions can increase force production and improve subsequent strength performance, however the influence of chain-loaded resistance (CLR) on subsequent free-weight squat performance has not been examined. Thus, the aim of the present study was to determine the effects of a chain-loaded resistance warm-up routine on subsequent free-weight squat performance
Identifying Robust Risk Factors for Knee Osteoarthritis Progression: An Evolutionary Machine Learning Approach
Knee osteoarthritis (KOA) is a multifactorial disease which is responsible for more than 80% of the osteoarthritis disease’s total burden. KOA is heterogeneous in terms of rates of progression with several different phenotypes and a large number of risk factors, which often interact with each other. A number of modifiable and non-modifiable systemic and mechanical parameters along with comorbidities as well as pain-related factors contribute to the development of KOA. Although models exist to predict the onset of the disease or discriminate between asymptotic and OA patients, there are just a few studies in the recent literature that focused on the identification of risk factors associated with KOA progression. This paper contributes to the identification of risk factors for KOA progression via a robust feature selection (FS) methodology that overcomes two crucial challenges: (i) the observed high dimensionality and heterogeneity of the available data that are obtained from the Osteoarthritis Initiative (OAI) database and (ii) a severe class imbalance problem posed by the fact that the KOA progressors class is significantly smaller than the non-progressors’ class. The proposed feature selection methodology relies on a combination of evolutionary algorithms and machine learning (ML) models, leading to the selection of a relatively small feature subset of 35 risk factors that generalizes well on the whole dataset (mean accuracy of 71.25%). We investigated the effectiveness of the proposed approach in a comparative analysis with well-known FS techniques with respect to metrics related to both prediction accuracy and generalization capability. The impact of the selected risk factors on the prediction output was further investigated using SHapley Additive exPlanations (SHAP). The proposed FS methodology may contribute to the development of new, efficient risk stratification strategies and identification of risk phenotypes of each KOA patient to enable appropriate interventions
Altered Drop Jump Landing Biomechanics Following Eccentric Exercise-Induced Muscle Damage
Limited research exists in the literature regarding the biomechanics of the jump-landing sequence in individuals that experience symptoms of muscle damage. The present study investigated the effects of knee localized muscle damage on sagittal plane landing biomechanics during drop vertical jump (DVJ). Thirteen regional level athletes performed five sets of 15 maximal eccentric voluntary contractions of the knee extensors of both legs at 60°/s. Pelvic and lower body kinematics and kinetics were measured pre- and 48 h post-eccentric exercise. The examination of muscle damage indicators included isometric torque, muscle soreness, and serum creatine kinase (CK) activity. The results revealed that all indicators changed significantly following eccentric exercise (p < 0.05). Peak knee and hip joint flexion as well as peak anterior pelvic tilt significantly increased, whereas vertical ground reaction force (GRF), internal knee extension moment, and knee joint stiffness significantly decreased during landing (p < 0.05). Therefore, the participants displayed a softer landing pattern following knee-localized eccentric exercise while being in a muscle-damaged state. This observation provides new insights on how the DVJ landing kinematics and kinetics alter to compensate the impaired function of the knee extensors following exercise-induced muscle damage (EIMD) and residual muscle soreness 48 h post-exercise
Influence of variable resistance loading on subsequent free weight maximal back squat performance
The purpose of the study was to determine the potentiating effects of variable resistance (VR) exercise during a warm-up on subsequent free-weight resistance (FWR) maximal squat performance. In the first session, 16 recreationally active men (age = 26.0 ± 7.8 years; height = 1.7 ± 0.2 m; mass = 82.6 ± 12.7 kg) were familiarized with the experimental protocols and tested for 1 repetition maximum (1RM) squat lift. The subjects then visited the laboratory on 2 further occasions under either control or experimental conditions. During these conditions, 2 sets of 3 repetitions of either FWR (control) or VR (experimental) squat lifts at 85% of 1RM were performed; during the experimental condition, 35% of the load was generated from band tension. After a 5-minute rest, 1RM, 3D knee joint kinematics, and vastus medialis, vastus lateralis, rectus femoris, and semitendinosus electromyogram (EMG) signals were recorded simultaneously. No subject increased 1RM after FWR, however, 13 of 16 (81%) subjects increased 1RM after VR (mean = 7.7%; p 0.05) or EMG amplitudes (mean = 5.9%; p > 0.05) occurred. Preconditioning using VR significantly increased 1RM without detectable changes in knee extensor muscle activity or knee flexion angle, although eccentric and concentric velocities were reduced. Thus, VR seems to potentiate the neuromuscular system to enhance subsequent maximal lifting performance. Athletes could thus use VR during warm-up routines to maximize squat performance
Biomechanical effects of elastic bands, chains and free-weight resistance on submaximal back squat exercise
Imposing variable resistance using elastic bands (EB) or chains (Ch) in addition to the free-weight resistance (FWR; i.e. the bar and weights) alters the loading characteristics of a squat lift. This can increase the range of motion through which substantial loading is applied, while maintaining the average load, thus reducing loading at the movement’s ‘sticking point’. The manipulation of the loading characteristics can enable the athlete to operate at near maximal levels for a greater proportion of the exercise, providing a greater training stimulus and thus may be a more effective training tool. The aim of the present study was to examine the biomechanical differences between EB, Ch and FWR during the submaximal squat exercise. Methods: Fifteen strength-trained active men (age = 26.9 ± 7.9 yr, height = 172.3 ± 18.8 m, mass = 80.6 ± 12.2 kg) experienced in squatting (>3yr) volunteered for the study after giving written informed consent; ethical approval was granted from the University of Northampton. On three separate occasions the subjects performed FWR (control), EB or Ch (variable resistance) squat lifts for two sets of three repetitions at 85% 1-RM (35% of the load was generated from variable resistance). 3D motion analysis was used to record knee joint kinematics, and vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF) and semitendinosus (ST) electromyograms (EMG) were recorded simultaneously. To reduce EMG variability (increasing the ability to detect significant differences), VL, VM, RF EMG data were averaged to represent quadriceps femoris (QF) EMG activity. Repeated measures MANOVA’s were used to examine EMG and kinematic differences between conditions; significance was accepted at p 0.05) in peak (1.8-2.8%) or mean eccentric (2.4-6.6%) and peak (3.5-4.0%) or mean concentric (5.0-6.0%) QF EMG activity were found between conditions. Similarly, no differences (p > 0.05) in peak (5.8-14.3%) or mean (9.2-15.8%) eccentric and peak (8.9-9.6%) or mean concentric (1.2-1.7%) knee angular velocities, or peak knee flexion angle (1-1.5%) were observed. Discussion: Performing the back squat exercise with the use of elastic bands or chains to provide 35% of the resistance compared to FWR alone at 85% of 1-RM did not alter knee extensor EMG amplitude or knee kinematics during the squat lift in either eccentric or concentric phases, and did not affect squat depth. Both significant and non-significant changes in kinematics, ground reaction forces and muscle activity have been previously reported in the literature; substantial differences in methodology likely explain these equivocal findings
- …