1,306 research outputs found

    Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury

    Get PDF
    In this review, we first provide a brief historical perspective, discussing how peripheral nerve injury (PNI) may have caused World War I. We then consider the initiation, progression, and resolution of the cellular inflammatory response after PNI, before comparing the PNI inflammatory response with that induced by spinal cord injury (SCI)

    Optically Induced Thermal Gradients for Protein Characterization in Nanolitre-scale Samples in Microfluidic Devices

    Get PDF
    Proteins are the most vital biological functional units in every living cell. Measurement of protein stability is central to understanding their structure, function and role in diseases. While proteins are also sought as therapeutic agents, they can cause diseases by misfolding and aggregation in vivo. Here we demonstrate a novel method to measure protein stability and denaturation kinetics, on unprecedented timescales, through optically-induced heating of nanolitre samples in microfluidic capillaries. We obtain protein denaturation kinetics as a function of temperature, and accurate thermodynamic stability data, from a snapshot experiment on a single sample. We also report the first experimental characterization of optical heating in controlled microcapillary flow, verified by computational fluid dynamics modelling. Our results demonstrate that we now have the engineering science in hand to design integrated all-optical microfluidic chips for a diverse range of applications including in-vitro DNA amplification, healthcare diagnostics, and flow chemistry

    Effect of bainite morphology on hydrogen trapping in X70 microalloyed steel

    Get PDF
    Please click Additional Files below to see the full abstrac

    Are Microbubbles Necessary for the Breakdown of Liquid Water Subjected to a Submicrosecond Pulse?

    Get PDF
    Electrical breakdown in homogeneous liquid water for an ∼ 100 ns voltage pulse is analyzed. It is shown that electron-impact ionization is not likely to be important and could only be operative for low-density situations or possibly under optical excitation. Simulation results also indicate that field ionization of liquid water can lead to a liquid breakdown provided the ionization energies were very low in the order of 2.3eV. Under such conditions, an electric-field collapse at the anode and plasma propagation toward the cathode, with minimal physical charge transport, is predicted. However, the low, unphysical ionization energies necessary for matching the observed current and experimental breakdown delays of ∼ 70 ns precludes this mechanism. Also, an ionization within the liquid cannot explain the polarity dependence nor the stochastic-dendritic optical emission structures seen experimentally. It is argued here that electron-impact ionization within randomly located microbubbles is most likely to be responsible for the collective liquid breakdown behaviors
    • …
    corecore