1,566 research outputs found

    Electric Charge Quantization

    Full text link
    Experimentally it has been known for a long time that the electric charges of the observed particles appear to be quantized. An approach to understanding electric charge quantization that can be used for gauge theories with explicit U(1)U(1) factors -- such as the standard model and its variants -- is pedagogically reviewed and discussed in this article. This approach uses the allowed invariances of the Lagrangian and their associated anomaly cancellation equations. We demonstrate that charge may be de-quantized in the three-generation standard model with massless neutrinos, because differences in family-lepton--numbers are anomaly-free. We also review the relevant experimental limits. Our approach to charge quantization suggests that the minimal standard model should be extended so that family-lepton--number differences are explicitly broken. We briefly discuss some candidate extensions (e.g. the minimal standard model augmented by Majorana right-handed neutrinos).Comment: 18 pages, LaTeX, UM-P-92/5

    Evidence for mirror dark matter from the CDMS low energy electron recoil spectrum

    Full text link
    We point out that mirror dark matter predicts low energy (ER<2E_R \stackrel{<}{\sim} 2 keV) electron recoils from mirror electron scattering as well as nuclear recoils from mirror ion scattering. The former effect is examined and applied to the recently released low energy electron recoil data from the CDMS collaboration. We speculate that the sharp rise in electron recoils seen in CDMS below 2 keV might be due to mirror electron scattering and show that the parameters suggested by the data are roughly consistent with the mirror dark matter explanation of the annual modulation signal observed in the DAMA/Libra and DAMA/NaI experiments. Thus, the CDMS data offer tentative evidence supporting the mirror dark matter explanation of the DAMA experiments, which can be more rigorously checked by future low energy electron recoil measurements.Comment: about 9 pages, comments welcome

    Solutions of the atmospheric, solar and LSND neutrino anomalies from TeV scale quark-lepton unification

    Get PDF
    There is a unique SU(4)SU(2)LSU(2)RSU(4) \otimes SU(2)_L \otimes SU(2)_R gauge model which allows quarks and leptons to be unified at the TeV scale. It is already known that the neutrino masses arise radiatively in the model and are naturally light. We study the atmospheric, solar and LSND neutrino anomalies within the framework of this model.Comment: Minor changes, 31 page

    On the sign of the neutrino asymmetry induced by active-sterile neutrino oscillations in the early Universe

    Get PDF
    We deal with the problem of the final sign of the neutrino asymmetry generated by active-sterile neutrino oscillations in the Early Universe solving the full momentum dependent quantum kinetic equations. We study the parameter region 102<δm2/eV210310^{-2} \stackrel{<}{\sim} |\delta m^2|/eV^2\le 10^3. For a large range of sin22θ0\sin^2 2\theta_0 values the sign of the neutrino asymmetry is fixed and does not oscillate. For values of mixing parameters in the region 106<sin22θ0<3×104(eV2/δm2)10^{-6}\stackrel{<}{\sim}\sin^{2}2\theta_{0}\stackrel{<}{\sim} 3\times 10^{-4} ({\rm eV}^{2}/|\delta m^{2}|), the neutrino asymmetry appears to undergo rapid oscillations during the period where the exponential growth occurs. Our numerical results indicate that the oscillations are able to change the neutrino asymmetry sign. The sensitivity of the solutions and in particular of the final sign of lepton number to small changes in the initial conditions depends whether the number of oscillations is high enough. It is however not possible to conclude whether this effect is induced by the presence of a numerical error or is an intrinsic feature. As the amplitude of the statistical fluctuations is much lower than the numerical error, our numerical analysis cannot demonstrate the possibility of a chaotical generation of lepton domains. In any case this possibility is confined to a special region in the space of mixing parameters and it cannot spoil the compatibility of the νμνs\nu_{\mu}\leftrightarrow\nu_{s} solution to the neutrino atmospheric data obtained assuming a small mixing of the νs\nu_{s} with an eVτ{\rm eV}-\tau neutrino.Comment: Typo's corrected, accepted for publication in Phys.Rev.

    Properties of quasi two-dimensional condensates in highly anisotropic traps

    Full text link
    We theoretically investigate some of the observable properties of quasi two-dimensional condensates. Using a variational model based on a Gaussian-parabolic trial wavefunction we calculate chemical potential, condensate size in time-of-flight, release energy and collective excitation spectrum for varying trap geometries and atom numbers and find good agreement with recent published experimental results.Comment: 7 pages, 4 figure

    Mirror matter admixtures in K_S to gamma gamma

    Full text link
    The latest measurement of the K_S to gamma gamma branching ratio clearly shows an enhancement over the current theoretical prediction. As in other K and B meson decays, this invites to consider the possibility of the contribution of new physics. We study a particular form of the latter, which may be referred to as manifest mirror symmetry. The experimental data are described using previously determined values for the mixing angles of the admixtures of mirror matter in ordinary hadrons and by assuming that for pi^0, eta, eta', the mirror decay amplitudes have the same magnitudes as their ordinary counterparts

    Implications of TeV scale SU(4)xSU(2)_LxSU(2)_R quark-lepton unification

    Get PDF
    The alternative SU(4)SU(2)LSU(2)RSU(4) \otimes SU(2)_L \otimes SU(2)_R gauge model, which allows unification of the quarks and leptons at the TeV scale, is studied in detail. We discuss the implications for nucleon decay, B and K rare meson decays and neutrino masses. We also explain how this model solves the gauge hierarchy problem without using supersymmetry or extra large dimensions.Comment: About 12 pages, 3 eps figs, late

    Model for a Light Z' Boson

    Full text link
    A model of a light ZZ' boson is constructed and phenomenological bounds are derived. This ZZ' boson arises from a very simple extension to the Standard Model, and it is constrained to be light because the vacuum expectation values which generate its mass also break the electroweak gauge group. It is difficult to detect experimentally because it couples exclusively or primarily (depending on symmetry breaking details) to second and third generation leptons. However, if the ZZ' boson is sufficiently light, then there exists the possibility of the two-body decay τμZ\tau \rightarrow \mu Z' occuring. This will provide a striking signature to test the model.Comment: 20 pages + 5 pages of figures (appended as postscipt files), LaTeX, OITS-53

    Quark-Lepton Quartification

    Full text link
    We propose that quarks and leptons are interchangeable entities in the high-energy limit. This naturally results in the extension of [SU(3)]^3 trinification to [SU(3)]^4 quartification. In addition to the unbroken color SU(3)_q of quarks, there is now also a color SU(3)_l of leptons which reduces to an unbroken SU(2)_l. We discuss the natural occurrence of SU(2)_l doublets at the TeV energy scale, which leads remarkably to the unification of all gauge couplings without supersymmetry. Proton decay occurs through the exchange of scalar bosons, with a lifetime in the range 10^{34} - 10^{36} years.Comment: 12 pages, 4 figures. Reference adde
    corecore