127 research outputs found
Eyelid development, fusion and subsequent reopening in the mouse
The process of eyelid development was studied in the mouse. The critical events occur between about 15.5 d postcoitum (p.c.) and 12 d after birth, and were studied by conventional histology and by scanning electron microscopy. At about 15.5 d p.c. the cornea of the eye is clearly visible with the primitive eyelids being represented by protruding ridges of epithelium at its periphery. Over the next 24 h, eyelid development proceeds to the stage when the cornea is completely covered by the fused eyelids. Periderm cells stream in to fill the gap between the developing eyelids. Their proliferative activity is such that they produce a cellular excrescence on the outer surface of the line of fusion of the eyelids. This excrescence had almost disappeared by about 17.5 d p.c. Keratinisation is first evident at this stage on the surface of the eyelids and passes continuously from one eyelid to the other. Evidence of epidermal differentiation is more clearly seen in the newborn, where a distinctive stratum granulosum now occupies about one third of its entire thickness. Within the subjacent dermis, hair follicles are differentiating. By about 5 d after birth, a thick layer of keratin extends without interruption across the junctional region. While a noticeable surface indentation overlies the latter, a similar depression is only seen on the conjunctival surface by about 10 d after birth. Keratinisation is also observed to extend in from the epidermal surface to involve the entire region between the 2 eyelids at about this time.(ABSTRACT TRUNCATED AT 250 WORDS
Morphometric study of the optic nerve of adult normal mice and mice heterozygous for the Small eye mutation (Sey/+)
The Small eye (Sey) gene, which has been mapped to chromosome 2 in the mouse, is known to cause variable malformations of the eye and nose. The effect of the gene in the heterozygous state is mainly on the eye. A combined electron microscopy and morphometric analysis of the optic nerve in adult littermates with a normal (+/+) and heterozygous mutant (Sey/+) genotype was carried out. The optic nerve could be dissected from the posterior pole of the eyeball to the optic chiasma in all the mice examined. The results of morphometric analyses carried out in this study show that the Sey gene indirectly affects the normal morphogenesis of the optic nerve in the heterozygous mutant Sey male mouse to a significant degree compared with its male normal littermate. The heterozygous mutant Sey female mouse is also affected, but not significantly so when compared with its normal female littermate. The mean nerve cross-sectional area and mean nerve fibre counts for the Sey strain are lower than those observed in other strains of mice that have been studied. The nerve fibre densities and the spectrum of nerve fibre sizes encountered are, however, similar to those seen in other strains of mice. We believe that the findings indicate that the smaller mean nerve fibre counts observed in the heterozygous mutant (Sey/+) mice compared to their normal (+/+) siblings is unlikely to have resulted from primary retinal dysgenesis, but is a consequence of the reduced size of their neural retina, and total retinal ganglion cell population
Recommended from our members
The role of potential vorticity anomalies in the Somali Jet on Indian summer monsoon intraseasonal variability
The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during the summer season (June to September). Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of this circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind stress curl, and upwelling processes. The feedback mechanism is consistent with observed coupled ocean-atmosphere system variability timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon subseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet
Adaptive model-driven user interface development systems
Adaptive user interfaces (UIs) were introduced to address some of the usability problems that plague many software applications. Model-driven engineering formed the basis for most of the systems targeting the development of such UIs. An overview of these systems is presented and a set of criteria is established to evaluate the strengths and shortcomings of the state-of-the-art, which is categorized under architectures, techniques, and tools. A summary of the evaluation is presented in tables that visually illustrate the fulfillment of each criterion by each system. The evaluation identified several gaps in the existing art and highlighted the areas of promising improvement
Mouse SPNS2 Functions as a Sphingosine-1-Phosphate Transporter in Vascular Endothelial Cells
Sphingosine-1-phosphate (S1P), a sphingolipid metabolite that is produced inside
the cells, regulates a variety of physiological and pathological responses via
S1P receptors (S1P1–5). Signal transduction between cells consists of
three steps; the synthesis of signaling molecules, their export to the
extracellular space and their recognition by receptors. An S1P concentration
gradient is essential for the migration of various cell types that express S1P
receptors, such as lymphocytes, pre-osteoclasts, cancer cells and endothelial
cells. To maintain this concentration gradient, plasma S1P concentration must be
at a higher level. However, little is known about the molecular mechanism by
which S1P is supplied to extracellular environments such as blood plasma. Here,
we show that SPNS2 functions as an S1P transporter in vascular endothelial cells
but not in erythrocytes and platelets. Moreover, the plasma S1P concentration of
SPNS2-deficient mice was reduced to approximately 60% of wild-type, and
SPNS2-deficient mice were lymphopenic. Our results demonstrate that SPNS2 is the
first physiological S1P transporter in mammals and is a key determinant of
lymphocyte egress from the thymus
Recommended from our members
Indian summer monsoon onset forecast skill in the UK Met Office initialized coupled seasonal forecasting system (GloSea5-GC2)
Accurate and precise forecasting of the Indian monsoon is important for the socio-economic security of India, with improvements in agriculture and associated sectors from prediction of the monsoon onset. In this study we establish the skill of the UK Met Office coupled initialized global seasonal forecasting system, GloSea5-GC2, in forecasting Indian monsoon onset. We build on previous work that has demonstrated the good skill of GloSea5 at forecasting interannual variations of the seasonal mean Indian monsoon using measures of large-scale circulation and local precipitation. We analyze the summer hindcasts from a set of three springtime start-dates in late April/early May for the 20-year hindcast period (1992-2011). The hindcast set features at least fifteen ensemble members for each year and is analyzed using five different objective monsoon indices. These indices are designed to examine large and local-scale measures of the monsoon circulation, hydrological changes, tropospheric temperature gradient, or rainfall for single value (area-averaged) or grid-point measures of the Indian monsoon onset. There is significant correlation between onset dates in the model and those found in reanalysis. Indices based on large-scale dynamic and thermodynamic indices are better at estimating monsoon onset in the model rather than local-scale dynamical and hydrological indices. This can be attributed to the model's better representation of large-scale dynamics compared to local-scale features. GloSea5 may not be able to predict the exact date of monsoon onset over India, but this study shows that the model has a good ability at predicting category-wise monsoon onset, using early, normal or late tercile categories. Using a grid-point local rainfall onset index, we note that the forecast skill is highest over parts of central India, the Gangetic plains, and parts of coastal India - all zones of extensive agriculture in India. El Niño Southern Oscillation (ENSO) forcing in the model improves the forecast skill of monsoon onset when using a large-scale circulation index, with late monsoon onset coinciding with El Niño conditions and early monsoon onset more common in La Niña years. The results of this study suggest that GloSea5's ensemble-mean forecast may be used for reliable Indian monsoon onset prediction a month in advance despite systematic model errors
- …