565 research outputs found

    An Exotic Theory of Massless Spin-Two Fields in Three Dimensions

    Get PDF
    It is a general belief that the only possible way to consistently deform the Pauli-Fierz action, changing also the gauge algebra, is general relativity. Here we show that a different type of deformation exists in three dimensions if one allows for PT non-invariant terms. The new gauge algebra is different from that of diffeomorphisms. Furthermore, this deformation can be generalized to the case of a collection of massless spin-two fields. In this case it describes a consistent interaction among them.Comment: 21+1 pages. Minor corrections and reference adde

    A note on the uniqueness of D=4 N=1 Supergravity

    Get PDF
    We investigate in 4 spacetime dimensions, all the consistent deformations of the lagrangian L2+L3/2{\cal L}_2+{\cal L}_{{3/2}}, which is the sum of the Pauli-Fierz lagrangian L2{\cal L}_2 for a free massless spin 2 field and the Rarita-Schwinger lagrangian L3/2{\cal L}_{{3/2}} for a free massless spin 3/2 field. Using BRST cohomogical techniques, we show, under the assumptions of locality, Poincar\'e invariance, conservation of the number of gauge symmetries and the number of derivatives on each fields, that N=1 D=4 supergravity is the only consistent interaction between a massless spin 2 and a massless spin 3/2 field. We do not assume general covariance. This follows automatically, as does supersymmetry invariance. Various cohomologies related to conservations laws are also given.Comment: 22+1 pages, LaTeX. References adde

    Extension of the Poincar\'e Group and Non-Abelian Tensor Gauge Fields

    Full text link
    In the recently proposed generalization of the Yang-Mills theory the group of gauge transformation gets essentially enlarged. This enlargement involves an elegant mixture of the internal and space-time symmetries. The resulting group is an extension of the Poincar\'e group with infinitely many generators which carry internal and space-time indices. This is similar to the super-symmetric extension of the Poincar\'e group, where instead of an anti-commuting spinor variable one should introduce a new vector variable. The construction of irreducible representations of the extended Poincar\'e algebra identifies a vector variable with the derivative of the Pauli-Lubanski vector over its length. As a result of this identification the generators of the gauge group have nonzero components only in the plane transversal to the momentum and are projecting out non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite space-like components.Comment: 21 page

    Theoretical Physics in the Twentieth Century

    Get PDF

    Slowly decaying classical fields, unitarity, and gauge invariance

    Full text link
    In classical external gauge fields that fall off less fast than the inverse of the evolution parameter (time) of the system the implementability of a unitary perturbative scattering operator (SS-matrix) is not guaranteed, although the field goes to zero. The importance of this point is exposed for the counter-example of low-dimensionally expanding systems. The issues of gauge invariance and of the interpretation of the evolution at intermediate times are also intricately linked to that point.Comment: 8 pages, no figure

    Production of non-Abelian tensor gauge bosons. Tree amplitudes in generalized Yang-Mills theory and BCFW recursion relation

    Full text link
    The BCFW recursion relation allows to calculate tree-level scattering amplitudes in generalized Yang-Mills theory and, in particular, four-particle amplitudes for the production rate of non-Abelian tensor gauge bosons of arbitrary high spin in the fusion of two gluons. The consistency of the calculations in different kinematical channels is fulfilled when all dimensionless cubic coupling constants between vector bosons (gluons) and high spin non-Abelian tensor gauge bosons are equal to the Yang-Mills coupling constant. There are no high derivative cubic vertices in the generalized Yang-Mills theory. The amplitudes vanish as complex deformation parameter tends to infinity, so that there is no contribution from the contour at infinity. We derive a generalization of the Parke-Taylor formula in the case of production of two tensor gauge bosons of spin-s and N gluons (jets). The expression is holomorhic in the spinor variables of the scattered particles, exactly as the MHV gluon amplitude is, and reduces to the gluonic MHV amplitude when s=1. In generalized Yang-Mills theory the tree level n-particle scattering amplitudes with all positive helicities vanish, but tree amplitudes with one negative helicity particle are already nonzero.Comment: 19 pages, LaTex fil

    On the Velo-Zwanziger phenomenon

    Full text link
    The Rarita-Schwinger equation in a curved background and an external electromagnetic field is discussed. We analyse the equation in the 2-component spinor formalism and derive Buchdahl conditions for them. The result is that the equation can consistently be imposed only on Einstein manifolds with vanishing electromagnetic field

    Graviton Mass or Cosmological Constant?

    Full text link
    To describe a massive graviton in 4D Minkowski space-time one introduces a quadratic term in the Lagrangian. This term, however, can lead to a readjustment or instability of the background instead of describing a massive graviton on flat space. We show that for all local Lorentz-invariant mass terms Minkowski space is unstable. We start with the Pauli-Fierz (PF) term that is the only local mass term with no ghosts in the linearized approximation. We show that nonlinear completions of the PF Lagrangian give rise to instability of Minkowski space. We continue with the mass terms that are not of a PF type. Although these models are known to have ghosts in the linearized approximations, nonlinear interactions can lead to background change due to which the ghosts are eliminated. In the latter case, however, the graviton perturbations on the new background are not massive. We argue that a consistent theory of a massive graviton on flat space can be formulated in theories with extra dimensions. They require an infinite number of fields or non-local description from a 4D point of view.Comment: 16 pages; references and comments adde

    Interacting Dark Matter and Dark Energy

    Full text link
    We discuss models for the cosmological dark sector in which the energy density of a scalar field approximates Einstein's cosmological constant and the scalar field value determines the dark matter particle mass by a Yukawa coupling. A model with one dark matter family can be adjusted so the observational constraints on the cosmological parameters are close to but different from what is predicted by the Lambda CDM model. This may be a useful aid to judging how tightly the cosmological parameters are constrained by the new generation of cosmological tests that depend on the theory of structure formation. In a model with two families of dark matter particles the scalar field may be locked to near zero mass for one family. This can suppress the long-range scalar force in the dark sector and eliminate evolution of the effective cosmological constant and the mass of the nonrelativistic dark matter particles, making the model close to Lambda CDM, until the particle number density becomes low enough to allow the scalar field to evolve. This is a useful example of the possibility for complexity in the dark sector.Comment: 15 pages, 6 figures; added a reference and a minor correctio

    Parent form for higher spin fields on anti-de Sitter space

    Full text link
    We construct a first order parent field theory for free higher spin gauge fields on constant curvature spaces. As in the previously considered flat case, both Fronsdal's and Vasiliev's unfolded formulations can be reached by two different straightforward reductions. The parent theory itself is formulated using a higher dimensional embedding space and turns out to be geometrically extremely transparent and free of the intricacies of both of its reductions.Comment: 39 pages, LaTeX; misprints corrected, references adde
    corecore