523 research outputs found

    1.9 K Heat Inleak and Resistive Heating Measurements on LHC Cryomagnets

    Get PDF
    The superconducting magnets of the Large Hadron Collider (LHC) distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. During the commissioning campaign of the sectors in 2008, cold standby periods at nominal operating temperature have allowed to measure the overall static heat inleaks reaching the magnet cold masses at 1.9 K by enthalpy balance in steady-state operation. In addition, during electrical powering of the different magnet circuits, helium II calorimetry based on precision thermometry has been implemented to assess with an accuracy of 100 mW/m the additional heat loads due to resistive heating and to detect possible abnormal heat dissipation during powering. This paper describes the method applied to perform these measurements, compares the results with the expected specified values and discusses the impact of the measured values on cryo-plant tuning and operational margins

    Comparison of floating and thermalized multilayer insulation systems at low boundary temperature

    Get PDF
    The Large Hadron Collider (LHC) is 26.7 km circumference particle collider using high-field superconducting magnets operating in superfluid helium. An efficient and robust thermal insulation system is therefore required to minimize the residual heat in leak to the large surface area at 1.9 K constituted by the stainless steel wall of the helium enclosure. The baseline solution uses "floating" multilayer reflective insulation. Moreover, an alternative consists of a combination of multilayer reflective films and a soft screen, partially thermalized to the 5 K level and supported away from the cold wall by net-type insulating spacers. This chapter establishes the improvement potential of the alternative over the baseline solution, and compares their insulation performance on the basis of measured characteristics of thermal contacts and spacers

    Neutralization of IFN-γ reverts clinical and laboratory features in a mouse model of macrophage activation syndrome.

    Get PDF
    BACKGROUND: The pathogenesis of macrophage activation syndrome (MAS) is not clearly understood: a large body of evidence supports the involvement of mechanisms similar to those implicated in the setting of primary hemophagocytic lymphohistiocytosis. OBJECTIVE: We sought to investigate the pathogenic role of IFN-γ and the therapeutic efficacy of IFN-γ neutralization in an animal model of MAS. METHODS: We used an MAS model established in mice transgenic for human IL-6 (IL-6TG mice) challenged with LPS (MAS mice). Levels of IFN-γ and IFN-γ-inducible chemokines were evaluated by using real-time PCR in the liver and spleen and by means of ELISA in plasma. IFN-γ neutralization was achieved by using the anti-IFN-γ antibody XMG1.2 in vivo. RESULTS: Mice with MAS showed a significant upregulation of the IFN-γ pathway, as demonstrated by increased mRNA levels of Ifng and higher levels of phospho-signal transducer and activator of transcription 1 in the liver and spleen and increased expression of the IFN-γ-inducible chemokines Cxcl9 and Cxcl10 in the liver and spleen, as well as in plasma. A marked increase in Il12a and Il12b expression was also found in livers and spleens of mice with MAS. In addition, mice with MAS had a significant increase in numbers of liver CD68+ macrophages. Mice with MAS treated with an anti-IFN-γ antibody showed a significant improvement in survival and body weight recovery associated with a significant amelioration of ferritin, fibrinogen, and alanine aminotransferase levels. In mice with MAS, treatment with the anti-IFN-γ antibody significantly decreased circulating levels of CXCL9, CXCL10, and downstream proinflammatory cytokines. The decrease in CXCL9 and CXCL10 levels paralleled the decrease in serum levels of proinflammatory cytokines and ferritin. CONCLUSION: These results provide evidence for a pathogenic role of IFN-γ in the setting of MAS

    Cryogenic R&D at the CERN Central Cryogenic Laboratory

    Get PDF
    The Central Cryogenic Laboratory operates since many years at CERN in the framework of cryogenic R&D for accelerators and experiments. The laboratory hosts several experimental posts for small cryogen ic tests, all implemented with pumping facility for GHe and vacuum, and is equipped with a He liquefier producing 6.105 l/year, which is distributed in dewars. Tests include thermomechanical qualifica tion of structural materials, cryogenic and vacuum qualification of prototypes, evaluation of thermal losses of components. Some of the most relevant results obtained at the laboratory in the last yea rs are outlined in this paper

    Design of the second series 15 m LHC prototype dipole magnet cryostats

    Get PDF
    A first series of six LHC 10 m long prototype dipole magnets and cryostats have been manufactured in European Industry and the assembled cryo-magnets tested singly and connected in series in a test string at CERN between March 1994 and December 1996. During the same period, an evolution in the requirements for LHC cryogenics distribution has lead the project management to adopt a separate cryo-distribution line running parallel to the LHC machine1. The former standard LHC half-cell, made up of a short straight section unit and four 10 m dipoles, has been discarded and replaced with one composed of a short straight section unit and three 15 m dipoles. The new 15 m LHC dipole magnet cryostats are described. These units house the dipole magnet cold mass standing on three low heat in-leak support columns, and enclosed within an actively cooled radiation screen operating at 4.5-20 K and an actively cooled thermal shield operating at 50-75 K

    A Cryogenic Test Station for the Pre-series 2400 W @ 1.8 K Refrigeration Units for the LHC

    Get PDF
    The cooling capacity below 2 K for the superconducting magnets in the Large Hadron Collider (LHC), at CERN, will be provided by eight refrigeration units at 1.8 K, each of them coupled to a 4.5 K refrigerator. The supply of the series units is linked to successful testing and acceptance of the pre-series delivered by the two selected vendors. To properly assess the performance of specific components such as cold compressors and some process specificities a dedicated test station is necessary. The test station is able to process up to 130 g/s between 4.5 & 20 K and aims at simulating the steady and transient operational modes foreseen for the LHC. After recalling the basic characteristics of the 1.8 K refrigeration units and the content of the acceptance tests of the pre-series, the principle of the test cryostat is detailed. The components of the test station and corresponding layout are described. The first testing experience is presented as well as preliminary results of the pre-series units

    Cryogenic Facilities at 1.9 K for the Reception of the Superconducting Wires and Cables of the LHC Dipoles Magnets

    Get PDF
    CERN's LHC project has moved to an implementation phase. The fabrication of 1600 high-field superconducting magnets operating at 1.9 K will require about 6400 km of Nb-Ti cables. A cryogenic test facility has therefore been set up in order, on the one hand, to verify the quality of individual wires and, on the other hand, to control the critical current of the assembled cables. The facility is composed of a helium liquefier, a transfer line, a dewar and pumps. The paper describes the fully automatic operation of this installation and the different test cycles applied to these wires and cables

    New cryogenic facilities for testing superconducting equipments for the CERN Large Hadron Collider

    Get PDF
    CERN's major project, the Large Hadron Collider (LHC), has moved to an implementation phase with machine construction to be completed by 2005. To achieve the design proton-proton centre of mass energy of 14 TeV in the given 27 km circumference LEP tunnel, the LHC will make an extensive use of high-field superconducting magnets using Nb-Ti filament operated at 1.9 K. In order to test, on the one han d, the superconducting cables of the magnets and, on the other hand, the expected performance of several of these magnets assembled in a string representing the lattice period of the machine (107 m lo ng), CERN has installed new cryogenic test facilities. The paper briefly describes these new facilities with all their associated equipments

    A Facility for Accurate Heat Load and Mass Leak Measurements on Superfluid Helium Valves

    Get PDF
    The superconducting magnets of the Large Hadron Collider (LHC) will be protected by safety relief valves operating at 1.9 K in superfluid helium (HeII). A test facility was developed to precisely determine the heat load and the mass leakage of cryogenic valves with HeII at their inlet. The temperature of the valve inlet can be varied from 1.8 K to 2 K for pressures up to 3.5 bar. The valve outlet pipe temperature can be regulated between 5 K and 20 K. The heat flow is measured with high precision using a Kapitza-resistance heatmeter and is also crosschecked by a vaporization measurement. After calibration, a precision of 10 mW for heat flows up to 1.1 W has been achieved. The helium leak can be measured up to 15 mg/s with an accuracy of 0.2 mg/s. We present a detailed description of the test facility and the measurements showing its performances
    corecore