365 research outputs found

    Distortions to Agricultural Incentives in Indonesia

    Get PDF
    Distorted incentives, agricultural and trade policy reforms, national agricultural development, Agricultural and Food Policy, International Relations/Trade, F13, F14, Q17, Q18,

    Agricultural Protection in a Food Importing Country: Indonesia

    Get PDF
    This paper summarizes two country-specific studies which examine the degree and changing patterns of incentives to domestic agriculture in Malaysia and Vietnam. Malaysia stands out in the developing world for its long-standing commitment to maintaining a relatively open trade and investment policy regime. However excessive assistance given to paddy farmers remains a major distortion in agricultural incentives. Market oriented reforms in Vietnam began in the late 1990 with attempts to unshackle domestic agriculture, and reforms in this areas have been wide-ranging, with the exception of excessive assistance provided to sugar cane producers. The impressive reform outcome in agriculture has played a pivotal role in sustaining the momentum of reforms, assuring the continuation of market-oriented reforms. However, remain a major anomaly in the incentive structure.International Relations/Trade,

    Exploring the differences between forward osmosis and reverse osmosis fouling

    Get PDF
    A comparison of alginate fouling in forward osmosis (FO) with that in reverse osmosis (RO) was made. A key experimental finding, corroborated by membrane autopsies, was that FO is essentially more prone to fouling than RO, which is opposite to a common claim in the literature where deductions on fouling are often based solely on the water flux profiles. Our theoretical analysis shows that, due to a decrease in the intensity of internal concentration polarization (ICP), and thus an increase in the effective osmotic driving force during FO fouling tests, the similarity of experimental water flux profiles for FO and RO is in accordance with there being greater fouling in FO than RO. The specific foulant resistance for FO was also found to be greater than that for RO. Possible explanations are discussed and these include the influence of reverse solute diffusion from draw solution. Whilst this explanation regarding specific foulant resistance is dependent on the draw solution properties, the finding of greater overall foulant accumulation in FO is considered to be a general finding. Additionally, the present study did not find evidence that hydraulic pressure in RO plays a critical role in foulant layer compaction. Overall this study demonstrated that although FO has higher fouling propensity, it offers superior water flux stability against fouling. For certain practical applications this resilience may be important

    Aquaporins (AQP)-based biomimetic membranes for water reuse and desalination

    Get PDF
    Aquaporins (AQPs) are biological proteins that form selective natural water channels. They have received increasing attention because of their high water permeability (each water channel can pass ~ 109 water molecules per second) and superior selectivity (i.e., the water channel only allows water passage while fully rejecting solutes). Over the past several years, many efforts have been devoted to developing AQP-based biomimetic membranes (ABM). Excitingly, this concept has been proven in the laboratory recently. AQPs have been demonstrated to be able to increase the water flux of RO flat sheet membranes when incorporated into the selective layer of the membrane. The commercialization of the AQP-based biomimetic membranes has also been initiated. However, the practical application of AQP-based biomimetic membranes still faces many challenges. For example, the long-term stability of the aquaporin-based biomimetic (ABM) membrane is not clear. In addition, further R&D efforts are needed to further improve the performance of AQP-based biomimetic membranes. In this presentation, we will report the latest development of AQP-based biomimetic membranes in hollow fiber configuration at Singapore Membrane Technology Centre, and the investigation on ABM’s stability and long-term reverse osmosis (RO) performance. Please click Additional Files below to see the full abstract

    A comparative study of techniques used for porous membrane characterization: pore characterization

    Get PDF
    A range of commerical UF membranes have been characterized by thermoporometry, biliquid permporometry and molecular weight cut-off experiments. A comparison of results from these three independent techniques for the same types of membrane shows an indication of the strength and weakness of the methods. MWCO values determined from actual rejection values using PEG and dextran were significantly lower than the manufacturer supplied data. The data obtained using the biliquid permporometry and solute rejection tests produced contrasting results for Amicon polysulfone (PM30) and regenerated cellulose (YM30) membranes. While MWCO determination resulted in sharper cut-off curves, the biliquid permporometry offered a broader size distribution with the PM30 and vice versa with the YM30. The pore sizes obtained by thermoporometry were significantly larger than those by the biliquid permporometry. The biliquid permporometry and thermoporometry give significantly higher values than the MWCO method. The closest comparison is obtained between the EM values and the MWCO method. This suggests that the controlling pore dimension for separation is the surface skin dimension

    Analysis of heat and mass transfer by CFD for performance enhancement in direct contact membrane distillation

    Get PDF
    A comprehensive analysis on the dominant effects for heat and mass transfer in the direct contact membrane distillation (DCMD) process has been performed with the aid of computational fluid dynamics (CFD) simulations for hollow fiber modules without and with annular baffles attached to the shell wall. Potential enhancement strategies under different circumstances have been investigated. Numerical simulations were carried out to investigate the effect of the MD intrinsic mass-transfer coefficient of the membrane (C) on the performance enhancement for both non-baffled and baffled modules. It was found that the temperature polarization coefficient (TPC) decreases significantly with increasing C value regardless of the existence of baffles, signifying a loss of overall driving force. However, the higher C compensated for this and the mass flux showed an increasing trend. A membrane with a lower C value was found to be less vulnerable to the TP effect. In this case, the introduction of turbulence aids such as baffles did not show substantial effect to improve system performance. In contrast, introducing baffles into the module can greatly enhance the mass flux and the TPC for a membrane with a high C value, where the main heat-transfer resistance is determined by the fluid side boundary layers. The effect of operating temperature on heat and mass transfer in the MD process was also studied with a membrane of a lower C value (2.0 × 10−7 kg m−2 s−1 Pa−1). Although the TPC generally decreased with increasing operating temperatures, the mass flux Nm increased significantly when operating temperature increased. A baffled module showed a more significant improvement than a non-baffle module at a higher temperature. Moreover, it was confirmed that higher operating temperatures are preferable for a substantial improvement in the heat/mass transfer as well as MD thermal efficiency, even with a relatively small transmembrane temperature difference of 10 K.Accepted versio

    Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling

    Get PDF
    This study explores the potential of microstructured hollow fiber designs to enhance process performance in a direct contact membrane distillation (DCMD) system. Hollow fibers with 10 different geometries (wavy- and gear-shaped cross sections) were evaluated. A series of three-dimensional computational fluid dynamic (CFD) simulations were carried out to investigate their capability in terms of depolarizing the buildup of liquid boundary layers, thus improving water productivity. Analyses of heat and mass transfer as well as the flow-field distribution in respective MD modules were obtained. It was found that the enhancement of the heat-transfer coefficients, hf, was up to 4.5-fold for a module with a wavy fiber design 07 and an approximate 5.5-fold hp increase for a gear-shaped fiber design. The average temperature polarization coefficient and mass flux Nm of the gear-shaped fiber module showed an improvement of 57% and 66%, respectively, over the original straight fiber design, followed by the wavy designs 07 and 08. The enhanced module performance was attributed to the improved hydrodynamics through the flow channels of various fiber geometries, which was confirmed by the visualization of flow-field and temperature profiles in CFD. Investigations of the fiber-length effect showed that the gear-shaped fiber modules exhibited the highest flux enhancement of 57–65% with the same length, compared to the modules with original straight and wavy fibers. In addition, the gear-shaped fiber module is very sensitive to feed velocity changes. Therefore, employing a smart microstructured design on the membrane surface would bring in a significant improvement under adverse flow conditions. Moreover, the computed water production and hydraulic energy consumption (HEC) among the modules with various fiber geometries were compared. With 1.9-fold surface area increase per unit volume, the gear-shaped fiber configuration had the highest water production but the lowest HEC, followed by wavy designs 07 and 08

    Analysis of the effect of turbulence promoters in hollow fiber membrane distillation modules by computational fluid dynamic (CFD) simulations

    Get PDF
    As an extended exploration of process enhancing strategies, nine modified hollow fiber modules with various turbulence promoters were designed and modeled using a two dimensional computational fluid dynamic (CFD) heat-transfer model to investigate their potential in improving heat transfer and module performance for a shell-side feed direct contact membrane distillation (DCMD) system. With the aids of turbulence promoters, the feed heat-transfer coefficient hf of the modified modules generally showed much slower decreasing trends along the fiber length compared to the original (unmodified) module. A 6-fold hf enhancement could be achieved by a modified module with annular baffles and floating round spacers. Consistently, the temperature polarization coefficient (TPC) and mass flux distribution curves of these modified modules presented increasing trends and gained an optimal improvement of 57% and 74%, respectively. With the local flow fields and temperature profiles visualized in CFD simulations, it was confirmed that an appropriate selection of turbulence promoters could promote intense secondary flows and radial mixing to improve the shell-side hydrodynamics and enhance heat transfer. Moreover, an increase of flow velocity was used and compared as a conventional approach to improve hydrodynamics. It was found that a well-designed module could bring more significant enhancement for a liquid-boundary layer dominant heat-transfer process. Finally, the hydraulic energy consumption (HEC) caused by the insertion of turbulence promoters or the increase of circulating velocity was compared. Configurations with attached quad spacers or floating round spacers achieved a good compromise between enhanced permeation fluxes and modest HECs. Overall, the TPC decreases with increasing MD coefficient (C) values and operating temperatures; while the thermal efficiency increases dramatically with increasing C and operating temperatures in a MD system
    corecore