2,600 research outputs found
Expected gamma-ray emission of supernova remnant SN 1987A
A nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova
remnants is employed to re-examine the nonthermal properties of the remnant of
SN 1987A for an extended evolutionary period of 5--100 yr. It is shown that an
efficient production of nuclear CRs leads to a strong modification of the outer
supernova remnant shock and to a large downstream magnetic field
mG. The shock modification and the strong field are
required to yield the steep radio emission spectrum observed, as well as to
considerable synchrotron cooling of high energy electrons which diminishes
their X-ray synchrotron flux. These features are also consistent with the
existing X-ray observations. The expected \gr energy flux at TeV-energies at
the current epoch is nearly erg cms under reasonable assumptions about the overall
magnetic field topology and the turbulent perturbations of this field. The
general nonthermal strength of the source is expected to increase roughly by a
factor of two over the next 15 to 20 yrs; thereafter it should decrease with
time in a secular form.Comment: 7 pages, 5 figures, accepted for publication in ApJ, a number of
changes have been made, even though these are not changing the main results
of the pape
- and -wave components induced around a vortex in -wave superconductors
Vortex structure of -wave superconductors is microscopically
analyzed in the framework of the quasi-classical Eilenberger equations. If the
pairing interaction contains an -wave (-wave) component in addition
to a -wave component, the -wave (-wave) component of
the order parameter is necessarily induced around a vortex in
-wave superconductors. The spatial distribution of the induced
-wave and -wave components is calculated. The -wave component has
opposite winding number around vortex near the -vortex core and
its amplitude has the shape of a four-lobe clover. The amplitude of
-component has the shape of an octofoil. These are consistent with
results based on the GL theory.Comment: RevTex,9 pages, 6 figures in a uuencoded fil
Geo-neutrinos: A systematic approach to uncertainties and correlations
Geo-neutrinos emitted by heat-producing elements (U, Th and K) represent a
unique probe of the Earth interior. The characterization of their fluxes is
subject, however, to rather large and highly correlated uncertainties. The
geochemical covariance of the U, Th and K abundances in various Earth
reservoirs induces positive correlations among the associated geo-neutrino
fluxes, and between these and the radiogenic heat. Mass-balance constraints in
the Bulk Silicate Earth (BSE) tend instead to anti-correlate the radiogenic
element abundances in complementary reservoirs. Experimental geo-neutrino
observables may be further (anti)correlated by instrumental effects. In this
context, we propose a systematic approach to covariance matrices, based on the
fact that all the relevant geo-neutrino observables and constraints can be
expressed as linear functions of the U, Th and K abundances in the Earth's
reservoirs (with relatively well-known coefficients). We briefly discuss here
the construction of a tentative "geo-neutrino source model" (GNSM) for the U,
Th, and K abundances in the main Earth reservoirs, based on selected
geophysical and geochemical data and models (when available), on plausible
hypotheses (when possible), and admittedly on arbitrary assumptions (when
unavoidable). We use then the GNSM to make predictions about several
experiments ("forward approach"), and to show how future data can constrain - a
posteriori - the error matrix of the model itself ("backward approach"). The
method may provide a useful statistical framework for evaluating the impact and
the global consistency of prospective geo-neutrino measurements and Earth
models.Comment: 17 pages, including 4 figures. To appear on "Earth, Moon, and
Planets," Special Issue on "Neutrino Geophysics," Proceedings of Neutrino
Science 2005 (Honolulu, Hawaii, Dec. 2005
SGARFACE: A Novel Detector For Microsecond Gamma Ray Bursts
The Short GAmma Ray Front Air Cherenkov Experiment (SGARFACE) is operated at
the Whipple Observatory utilizing the Whipple 10m gamma-ray telescope. SGARFACE
is sensitive to gamma-ray bursts of more than 100MeV with durations from 100ns
to 35us and provides a fluence sensitivity as low as 0.8 gamma-rays per m^2
above 200MeV (0.05 gamma-rays per m^2 above 2GeV) and allows to record the
burst time structure.Comment: 29 pages, 14 figures, accepted for publication in Astroparticle
Physic
CANGAROO-III Observation of TeV Gamma Rays from the vicinity of PSR B1 706-44
Observation by the CANGAROO-III stereoscopic system of the Imaging Cherenkov
Telescope has detected extended emission of TeV gamma rays in the vicinity of
the pulsar PSR B170644. The strength of the signal observed as
gamma-ray-like events varies when we apply different ways of emulating
background events. The reason for such uncertainties is argued in relevance to
gamma-rays embedded in the "off-source data", that is, unknown sources and
diffuse emission in the Galactic plane, namely, the existence of a complex
structure of TeV gamma-ray emission around PSR B170644.Comment: 10 pages, 13 figures, to be published in Ap
Large- Heavy-Quark Production in Two-Photon Collisions
The next-to-leading-order (NLO) cross section for the production of heavy
quarks at large transverse momenta () in collisions is
calculated with perturbative fragmentation functions (PFF's). This approach
allows for a resummation of terms which
arise in NLO from collinear emission of gluons by heavy quarks at large
or from almost collinear branching of photons or gluons into
heavy-quark pairs. We present single-inclusive distributions in and
rapidity including direct and resolved photons for production of
heavy quarks at colliders and at high-energy colliders.
The results are compared with the fixed-order calculation for finite
including QCD radiative corrections. The two approaches differ in the
definitions and relative contributions of the direct and resolved terms, but
essentially agree in their sum. The resummation of the terms in the PFF approach leads to a softer
distribution and to a reduced sensitivity to the choice of the renormalization
and factorization scales.Comment: 17 pages, Latex, epsf, 7 figures appended as uuencoded file (hardcopy
can be obtained upon request from [email protected]
First-Order Melting and Dynamics of Flux Lines in a Model for YBaCuO
We have studied the statics and dynamics of flux lines in a model for YBCO,
using both Monte Carlo simulations and Langevin dynamics. For a clean system,
both approaches yield the same melting curve, which is found to be weakly first
order with a heat of fusion of about per vortex pancake at a
field of The time averaged magnetic field distribution
experienced by a fixed spin is found to undergo a qualitative change at
freezing, in agreement with NMR and experiments. Melting in the
clean system is accompanied by a proliferation of free disclinations which show
a clear B-dependent 3D-2D crossover from long disclination lines parallel to
the c-axis at low fields, to 2D ``pancake'' disclinations at higher fields.
Strong point pins produce a logarithmical relaxation which results from
slow annealing out of disclinations in disordered samples.Comment: 31 pages, latex, revtex, 12 figures available upon request, No major
changes to the original text, but some errors in the axes scale for Figures 6
and 7 were corrected(new figures available upon request), to be published in
Physical Review B, July 199
Evidence of TeV gamma-ray emission from the nearby starburst galaxy NGC 253
TeV gamma-rays were recently detected from the nearby normal spiral galaxy
NGC 253 (Itoh et al., 2002). Observations to detect the Cherenkov light images
initiated by gamma-rays from the direction of NGC 253 were carried out in 2000
and 2001 over a total period of 150 hours. The orientation of images in
gamma-ray--like events is not consistent with emission from a point source, and
the emission region corresponds to a size greater than 10 kpc in radius. Here,
detailed descriptions of the analysis procedures and techniques are given.Comment: 16 pages, 27 figures, aa.cl
On vertex adjacencies in the polytope of pyramidal tours with step-backs
We consider the traveling salesperson problem in a directed graph. The
pyramidal tours with step-backs are a special class of Hamiltonian cycles for
which the traveling salesperson problem is solved by dynamic programming in
polynomial time. The polytope of pyramidal tours with step-backs is
defined as the convex hull of the characteristic vectors of all possible
pyramidal tours with step-backs in a complete directed graph. The skeleton of
is the graph whose vertex set is the vertex set of and the
edge set is the set of geometric edges or one-dimensional faces of .
The main result of the paper is a necessary and sufficient condition for vertex
adjacencies in the skeleton of the polytope that can be verified in
polynomial time.Comment: in Englis
Spin models for orientational ordering of colloidal molecular crystals
Two-dimensional colloidal suspensions exposed to periodic external fields
exhibit a variety of molecular crystalline phases. There two or more colloids
assemble at lattice sites of potential minima to build new structural entities,
referred to as molecules. Using the strength of the potential and the filling
fraction as control parameter, phase transition to unconventional
orientationally ordered states can be induced. We introduce an approach that
focuses at the discrete set of orientational states relevant for the phase
ordering. The orientationally ordered states are mapped to classical spin
systems. We construct effective hamiltonians for dimeric and trimeric molecules
on triangular lattices suitable for a statistical mechanics discussion. A
mean-field analysis produces a rich phase behavior which is substantiated by
Monte Carlo simulations.Comment: 19 pages, 21 figures; misplacement of Fig.3 fixe
- …