2,568 research outputs found

    Expected gamma-ray emission of supernova remnant SN 1987A

    Full text link
    A nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants is employed to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5--100 yr. It is shown that an efficient production of nuclear CRs leads to a strong modification of the outer supernova remnant shock and to a large downstream magnetic field Bd20B_\mathrm{d}\approx 20 mG. The shock modification and the strong field are required to yield the steep radio emission spectrum observed, as well as to considerable synchrotron cooling of high energy electrons which diminishes their X-ray synchrotron flux. These features are also consistent with the existing X-ray observations. The expected \gr energy flux at TeV-energies at the current epoch is nearly ϵγFγ4×1013\epsilon_{\gamma}F_{\gamma}\approx 4\times 10^{-13} erg cm2^2s1^{-1} under reasonable assumptions about the overall magnetic field topology and the turbulent perturbations of this field. The general nonthermal strength of the source is expected to increase roughly by a factor of two over the next 15 to 20 yrs; thereafter it should decrease with time in a secular form.Comment: 7 pages, 5 figures, accepted for publication in ApJ, a number of changes have been made, even though these are not changing the main results of the pape

    ss- and dxyd_{xy}-wave components induced around a vortex in dx2y2d_{x^2-y^2}-wave superconductors

    Full text link
    Vortex structure of dx2y2d_{x^2-y^2}-wave superconductors is microscopically analyzed in the framework of the quasi-classical Eilenberger equations. If the pairing interaction contains an ss-wave (dxyd_{xy}-wave) component in addition to a dx2y2d_{x^2-y^2}-wave component, the ss-wave (dxyd_{xy}-wave) component of the order parameter is necessarily induced around a vortex in dx2y2d_{x^2-y^2}-wave superconductors. The spatial distribution of the induced ss-wave and dxyd_{xy}-wave components is calculated. The ss-wave component has opposite winding number around vortex near the dx2y2d_{x^2-y^2}-vortex core and its amplitude has the shape of a four-lobe clover. The amplitude of dxyd_{xy}-component has the shape of an octofoil. These are consistent with results based on the GL theory.Comment: RevTex,9 pages, 6 figures in a uuencoded fil

    Geo-neutrinos: A systematic approach to uncertainties and correlations

    Get PDF
    Geo-neutrinos emitted by heat-producing elements (U, Th and K) represent a unique probe of the Earth interior. The characterization of their fluxes is subject, however, to rather large and highly correlated uncertainties. The geochemical covariance of the U, Th and K abundances in various Earth reservoirs induces positive correlations among the associated geo-neutrino fluxes, and between these and the radiogenic heat. Mass-balance constraints in the Bulk Silicate Earth (BSE) tend instead to anti-correlate the radiogenic element abundances in complementary reservoirs. Experimental geo-neutrino observables may be further (anti)correlated by instrumental effects. In this context, we propose a systematic approach to covariance matrices, based on the fact that all the relevant geo-neutrino observables and constraints can be expressed as linear functions of the U, Th and K abundances in the Earth's reservoirs (with relatively well-known coefficients). We briefly discuss here the construction of a tentative "geo-neutrino source model" (GNSM) for the U, Th, and K abundances in the main Earth reservoirs, based on selected geophysical and geochemical data and models (when available), on plausible hypotheses (when possible), and admittedly on arbitrary assumptions (when unavoidable). We use then the GNSM to make predictions about several experiments ("forward approach"), and to show how future data can constrain - a posteriori - the error matrix of the model itself ("backward approach"). The method may provide a useful statistical framework for evaluating the impact and the global consistency of prospective geo-neutrino measurements and Earth models.Comment: 17 pages, including 4 figures. To appear on "Earth, Moon, and Planets," Special Issue on "Neutrino Geophysics," Proceedings of Neutrino Science 2005 (Honolulu, Hawaii, Dec. 2005

    SGARFACE: A Novel Detector For Microsecond Gamma Ray Bursts

    Full text link
    The Short GAmma Ray Front Air Cherenkov Experiment (SGARFACE) is operated at the Whipple Observatory utilizing the Whipple 10m gamma-ray telescope. SGARFACE is sensitive to gamma-ray bursts of more than 100MeV with durations from 100ns to 35us and provides a fluence sensitivity as low as 0.8 gamma-rays per m^2 above 200MeV (0.05 gamma-rays per m^2 above 2GeV) and allows to record the burst time structure.Comment: 29 pages, 14 figures, accepted for publication in Astroparticle Physic

    CANGAROO-III Observation of TeV Gamma Rays from the vicinity of PSR B1 706-44

    Get PDF
    Observation by the CANGAROO-III stereoscopic system of the Imaging Cherenkov Telescope has detected extended emission of TeV gamma rays in the vicinity of the pulsar PSR B1706-44. The strength of the signal observed as gamma-ray-like events varies when we apply different ways of emulating background events. The reason for such uncertainties is argued in relevance to gamma-rays embedded in the "off-source data", that is, unknown sources and diffuse emission in the Galactic plane, namely, the existence of a complex structure of TeV gamma-ray emission around PSR B1706-44.Comment: 10 pages, 13 figures, to be published in Ap

    Large-pp_\perp Heavy-Quark Production in Two-Photon Collisions

    Full text link
    The next-to-leading-order (NLO) cross section for the production of heavy quarks at large transverse momenta (pp_\perp) in γγ\gamma\gamma collisions is calculated with perturbative fragmentation functions (PFF's). This approach allows for a resummation of terms αsln(p2/m2)\propto\alpha_s\ln(p_\perp^2/m^2) which arise in NLO from collinear emission of gluons by heavy quarks at large pp_\perp or from almost collinear branching of photons or gluons into heavy-quark pairs. We present single-inclusive distributions in pp_\perp and rapidity including direct and resolved photons for γγ\gamma\gamma production of heavy quarks at e+ee^+e^- colliders and at high-energy γγ\gamma\gamma colliders. The results are compared with the fixed-order calculation for mm finite including QCD radiative corrections. The two approaches differ in the definitions and relative contributions of the direct and resolved terms, but essentially agree in their sum. The resummation of the αsln(p2/m2)\alpha_s \ln(p_\perp^2/m^2) terms in the PFF approach leads to a softer pp_\perp distribution and to a reduced sensitivity to the choice of the renormalization and factorization scales.Comment: 17 pages, Latex, epsf, 7 figures appended as uuencoded file (hardcopy can be obtained upon request from [email protected]

    First-Order Melting and Dynamics of Flux Lines in a Model for YBa2_2Cu3_3O7δ_{7-\delta}

    Full text link
    We have studied the statics and dynamics of flux lines in a model for YBCO, using both Monte Carlo simulations and Langevin dynamics. For a clean system, both approaches yield the same melting curve, which is found to be weakly first order with a heat of fusion of about 0.02kBTm0.02 k_BT_m per vortex pancake at a field of 50kG.50 {\rm kG}. The time averaged magnetic field distribution experienced by a fixed spin is found to undergo a qualitative change at freezing, in agreement with NMR and μSR\mu {\rm SR} experiments. Melting in the clean system is accompanied by a proliferation of free disclinations which show a clear B-dependent 3D-2D crossover from long disclination lines parallel to the c-axis at low fields, to 2D ``pancake'' disclinations at higher fields. Strong point pins produce a logarithmical lnt\ln t relaxation which results from slow annealing out of disclinations in disordered samples.Comment: 31 pages, latex, revtex, 12 figures available upon request, No major changes to the original text, but some errors in the axes scale for Figures 6 and 7 were corrected(new figures available upon request), to be published in Physical Review B, July 199

    Evidence of TeV gamma-ray emission from the nearby starburst galaxy NGC 253

    Full text link
    TeV gamma-rays were recently detected from the nearby normal spiral galaxy NGC 253 (Itoh et al., 2002). Observations to detect the Cherenkov light images initiated by gamma-rays from the direction of NGC 253 were carried out in 2000 and 2001 over a total period of \sim150 hours. The orientation of images in gamma-ray--like events is not consistent with emission from a point source, and the emission region corresponds to a size greater than 10 kpc in radius. Here, detailed descriptions of the analysis procedures and techniques are given.Comment: 16 pages, 27 figures, aa.cl

    On vertex adjacencies in the polytope of pyramidal tours with step-backs

    Full text link
    We consider the traveling salesperson problem in a directed graph. The pyramidal tours with step-backs are a special class of Hamiltonian cycles for which the traveling salesperson problem is solved by dynamic programming in polynomial time. The polytope of pyramidal tours with step-backs PSB(n)PSB (n) is defined as the convex hull of the characteristic vectors of all possible pyramidal tours with step-backs in a complete directed graph. The skeleton of PSB(n)PSB (n) is the graph whose vertex set is the vertex set of PSB(n)PSB (n) and the edge set is the set of geometric edges or one-dimensional faces of PSB(n)PSB (n). The main result of the paper is a necessary and sufficient condition for vertex adjacencies in the skeleton of the polytope PSB(n)PSB (n) that can be verified in polynomial time.Comment: in Englis

    Spin models for orientational ordering of colloidal molecular crystals

    Get PDF
    Two-dimensional colloidal suspensions exposed to periodic external fields exhibit a variety of molecular crystalline phases. There two or more colloids assemble at lattice sites of potential minima to build new structural entities, referred to as molecules. Using the strength of the potential and the filling fraction as control parameter, phase transition to unconventional orientationally ordered states can be induced. We introduce an approach that focuses at the discrete set of orientational states relevant for the phase ordering. The orientationally ordered states are mapped to classical spin systems. We construct effective hamiltonians for dimeric and trimeric molecules on triangular lattices suitable for a statistical mechanics discussion. A mean-field analysis produces a rich phase behavior which is substantiated by Monte Carlo simulations.Comment: 19 pages, 21 figures; misplacement of Fig.3 fixe
    corecore