5,236 research outputs found

    Observation of chiral heat transport in the quantum Hall regime

    Get PDF
    Heat transport in the quantum Hall regime is investigated using micron-scale heaters and thermometers positioned along the edge of a millimeter-scale two dimensional electron system (2DES). The heaters rely on localized current injection into the 2DES, while the thermometers are based on the thermoelectric effect. In the v=1 integer quantized Hall state, a thermoelectric signal appears at an edge thermometer only when it is “downstream,” in the sense of electronic edge transport, from the heater. When the distance between the heater and the thermometer is increased, the thermoelectric signal is reduced, showing that the electrons cool as they propagate along the edge

    Evidence for a Goldstone Mode in a Double Layer Quantum Hall System

    Get PDF
    The tunneling conductance between two parallel 2D electron systems has been measured in a regime of strong interlayer Coulomb correlations. At total Landau level filling νT=1\nu_T=1 the tunnel spectrum changes qualitatively when the boundary separating the compressible phase from the ferromagnetic quantized Hall state is crossed. A huge resonant enhancement replaces the strongly suppressed equilibrium tunneling characteristic of weakly coupled layers. The possible relationship of this enhancement to the Goldstone mode of the broken symmetry ground state is discussed.Comment: 4 pages, 3 figures, 2 minor typeos fixe

    Tunneling Conductance Between Parallel Two Dimensional Electron Systems

    Full text link
    We derive and evaluate expressions for the low temperature {\it dc} equilibrium tunneling conductance between parallel two-dimensional electron systems. Our theory is based on a linear-response formalism and on impurity-averaged perturbation theory. The disorder broadening of features in the dependence of tunneling conductance on sheet densities and in-plane magnetic field strengths is influenced both by the finite lifetime of electrons within the wells and by non-momentum-conserving tunneling events. Disorder vertex corrections are important only for weak in-plane magnetic fields and strong interwell impurity-potential correlations. We comment on the basis of our results on the possibility of using tunneling measurements to determine the lifetime of electrons in the quantum wells.Comment: 14 pages, 5 Fig. not included, revtex, IUcm92-00

    The scale-dependence of relative galaxy bias: encouragement for the halo model description

    Full text link
    We investigate the relationship between the colors, luminosities, and environments of galaxies in the Sloan Digital Sky Survey spectroscopic sample, using environmental measurements on scales ranging from 0.2 to 6 Mpc/h. We find: (1) that the relationship between color and environment persists even to the lowest luminosities we probe (absolute magnitude in the r band of about -14 for h=1); (2) at luminosities and colors for which the galaxy correlation function has a large amplitude, it also has a steep slope; and (3) in regions of a given overdensity on small scales (1 Mpc/h), the overdensity on large scales (6 Mpc/h) does not appear to relate to the recent star formation history of the galaxies. Of these results, the last has the most immediate application to galaxy formation theory. In particular, it lends support to the notion that a galaxy's properties are related only to the mass of its host dark matter halo, and not to the larger scale environment.Comment: submitted to ApJ; full resolution figures and slide material available at http://cosmo.nyu.edu/blanton/scale_density.htm

    Improved cosmological constraints on the curvature and equation of state of dark energy

    Full text link
    We apply the Constitution compilation of 397 supernova Ia, the baryon acoustic oscillation measurements including the AA parameter, the distance ratio and the radial data, the five-year Wilkinson microwave anisotropy probe and the Hubble parameter data to study the geometry of the universe and the property of dark energy by using the popular Chevallier-Polarski-Linder and Jassal-Bagla-Padmanabhan parameterizations. We compare the simple χ2\chi^2 method of joined contour estimation and the Monte Carlo Markov chain method, and find that it is necessary to make the marginalized analysis on the error estimation. The probabilities of Ωk\Omega_k and waw_a in the Chevallier-Polarski-Linder model are skew distributions, and the marginalized 1σ1\sigma errors are Ωm=0.2790.008+0.015\Omega_m=0.279^{+0.015}_{-0.008}, Ωk=0.0050.011+0.006\Omega_k=0.005^{+0.006}_{-0.011}, w0=1.050.06+0.23w_0=-1.05^{+0.23}_{-0.06}, and wa=0.51.5+0.3w_a=0.5^{+0.3}_{-1.5}. For the Jassal-Bagla-Padmanabhan model, the marginalized 1σ1\sigma errors are Ωm=0.2810.01+0.015\Omega_m=0.281^{+0.015}_{-0.01}, Ωk=0.0000.006+0.007\Omega_k=0.000^{+0.007}_{-0.006}, w0=0.960.18+0.25w_0=-0.96^{+0.25}_{-0.18}, and wa=0.61.6+1.9w_a=-0.6^{+1.9}_{-1.6}. The equation of state parameter w(z)w(z) of dark energy is negative in the redshift range 0z20\le z\le 2 at more than 3σ3\sigma level. The flat Λ\LambdaCDM model is consistent with the current observational data at the 1σ1\sigma level.Comment: 10 figures, 12 pages, Classical and Quantum Gravity in press; v2 to match the pulished versio

    Evidence for a fractional quantum Hall state with anisotropic longitudinal transport

    Get PDF
    At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau level (LL), a clean two-dimensional electron system (2DES) exhibits numerous incompressible liquid phases which display the fractional quantized Hall effect (FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break rotational symmetry, exhibiting resistivities which are isotropic in the plane. In contrast, at lower fields, when the Fermi level lies in the N2N\ge2 third and several higher LLs, the 2DES displays a distinctly different class of collective states. In particular, near half filling of these high LLs the 2DES exhibits a strongly anisotropic longitudinal resistance at low temperatures (Lilly et al., 1999; Du et al., 1999). These "stripe" phases, which do not exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing broken rotational symmetry and orientational order (Koulakov et al., 1996; Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999; Fradkin et al, 2010). Here we report a surprising new observation: An electronic configuration in the N=1 second LL whose resistivity tensor simultaneously displays a robust fractionally quantized Hall plateau and a strongly anisotropic longitudinal resistance resembling that of the stripe phases.Comment: Nature Physics, (2011

    Transition from quantum Hall to compressible states in the second Landau level: new light on the ν\nu=5/2 enigma

    Full text link
    Quantum Hall states at filling fraction ν\nu=5/2 are examined by numerical diagonalization. Spin-polarized and -unpolarized states of systems with N18N\le 18 electrons are studied, neglecting effects of Landau level mixing. We find that the ground state is spin polarized. It is incompressible and has a large overlap with paired states like the Pfaffian. For a given sample, the energy gap is about 11 times smaller than at ν\nu=1/3. Evidence is presented of phase transitions to compressible states, driven by the interaction strength at short distance. A reinterpretation of experiments is suggested.Comment: This paper has already appeared in PRL, but has not been on the we

    Dark energy and curvature from a future baryonic acoustic oscillation survey using the Lyman-alpha forest

    Full text link
    We explore the requirements for a Lyman-alpha forest (LyaF) survey designed to measure the angular diameter distance and Hubble parameter at 2~<z~<4 using the standard ruler provided by baryonic acoustic oscillations (BAO). The goal would be to obtain a high enough density of sources to probe the three-dimensional density field on the scale of the BAO feature. A percent-level measurement in this redshift range can almost double the Dark Energy Task Force Figure of Merit, relative to the case with only a similar precision measurement at z~1, if the Universe is not assumed to be flat. This improvement is greater than the one obtained by doubling the size of the z~1 survey, with Planck and a weak SDSS-like z=0.3 BAO measurement assumed in each case. Galaxy BAO surveys at z~1 may be able to make an effective LyaF measurement simultaneously at minimal added cost, because the required number density of quasars is relatively small. We discuss the constraining power as a function of area, magnitude limit (density of quasars), resolution, and signal-to-noise of the spectra. For example, a survey covering 2000 sq. deg. and achieving S/N=1.8 per Ang. at g=23 (~40 quasars per sq. deg.) with an R~>250 spectrograph is sufficient to measure both the radial and transverse oscillation scales to 1.4% from the LyaF (or better, if fainter magnitudes and possibly Lyman-break galaxies can be used). At fixed integration time and in the sky-noise-dominated limit, a wider, noisier survey is generally more efficient; the only fundamental upper limit on noise being the need to identify a quasar and find a redshift. Because the LyaF is much closer to linear and generally better understood than galaxies, systematic errors are even less likely to be a problem.Comment: 18 pages including 6 figures, submitted to PR
    corecore