370 research outputs found

    Economic Fluctuations and Diffusion

    Full text link
    Stock price changes occur through transactions, just as diffusion in physical systems occurs through molecular collisions. We systematically explore this analogy and quantify the relation between trading activity - measured by the number of transactions NΔtN_{\Delta t} - and the price change GΔtG_{\Delta t}, for a given stock, over a time interval [t,t+Δt][t, t+\Delta t]. To this end, we analyze a database documenting every transaction for 1000 US stocks over the two-year period 1994-1995. We find that price movements are equivalent to a complex variant of diffusion, where the diffusion coefficient fluctuates drastically in time. We relate the analog of the diffusion coefficient to two microscopic quantities: (i) the number of transactions NΔtN_{\Delta t} in Δt\Delta t, which is the analog of the number of collisions and (ii) the local variance wΔt2w^2_{\Delta t} of the price changes for all transactions in Δt\Delta t, which is the analog of the local mean square displacement between collisions. We study the distributions of both NΔtN_{\Delta t} and wΔtw_{\Delta t}, and find that they display power-law tails. Further, we find that NΔtN_{\Delta t} displays long-range power-law correlations in time, whereas wΔtw_{\Delta t} does not. Our results are consistent with the interpretation that the pronounced tails of the distribution of GΔtareduetoG_{\Delta t} are due to w_{\Delta t},andthatthelong−rangecorrelationspreviouslyfoundfor, and that the long-range correlations previously found for | G_{\Delta t} |aredueto are due to N_{\Delta t}$.Comment: RevTex 2 column format. 6 pages, 36 references, 15 eps figure

    Statistical Properties of Share Volume Traded in Financial Markets

    Full text link
    We quantitatively investigate the ideas behind the often-expressed adage `it takes volume to move stock prices', and study the statistical properties of the number of shares traded QΔtQ_{\Delta t} for a given stock in a fixed time interval Δt\Delta t. We analyze transaction data for the largest 1000 stocks for the two-year period 1994-95, using a database that records every transaction for all securities in three major US stock markets. We find that the distribution P(QΔt)P(Q_{\Delta t}) displays a power-law decay, and that the time correlations in QΔtQ_{\Delta t} display long-range persistence. Further, we investigate the relation between QΔtQ_{\Delta t} and the number of transactions NΔtN_{\Delta t} in a time interval Δt\Delta t, and find that the long-range correlations in QΔtQ_{\Delta t} are largely due to those of NΔtN_{\Delta t}. Our results are consistent with the interpretation that the large equal-time correlation previously found between QΔtQ_{\Delta t} and the absolute value of price change ∣GΔt∣| G_{\Delta t} | (related to volatility) are largely due to NΔtN_{\Delta t}.Comment: 4 pages, two-column format, four figure
    • …
    corecore