60 research outputs found

    Are megaquakes clustered?

    Full text link
    We study statistical properties of the number of large earthquakes over the past century. We analyze the cumulative distribution of the number of earthquakes with magnitude larger than threshold M in time interval T, and quantify the statistical significance of these results by simulating a large number of synthetic random catalogs. We find that in general, the earthquake record cannot be distinguished from a process that is random in time. This conclusion holds whether aftershocks are removed or not, except at magnitudes below M = 7.3. At long time intervals (T = 2-5 years), we find that statistically significant clustering is present in the catalog for lower magnitude thresholds (M = 7-7.2). However, this clustering is due to a large number of earthquakes on record in the early part of the 20th century, when magnitudes are less certain.Comment: 5 pages, 5 figure

    Seismic and geodetic constraints on Cascadia slow slip

    Get PDF
    Automatically detected and located tremor epicenters from episodic tremor and slip (ETS) episodes in northern Cascadia provide a high-resolution map of Washington’s slow slip region. Thousands of epicenters from the past four ETS events from 2004 to 2008 provide detailed map-view constraints that correlate with geodetic estimates of the simultaneous slow slip. Each of these ETS events exhibits remarkable similarity in the timing and geographic distribution of tremor density and geodetically inferred slip. Analysis of the latest 15-month inter-ETS period also reveals ageodetic tremor activity similar both in duration and extent to ETS tremor. Epicenters from both ETS and inter- ETS tremor are bounded between the 30- and 45-km plate interface depth contours and locate approximately 75 km east of previous estimates of the locked portion of the subducting Juan de Fuca plate. Inter-ETS tremor overlaps but is generally downdip of ETS tremor and does not yet correlate with geodetically observed slip, but this is likely because the slip is below current GPS detection levels. Based on the tremor and slip correlation and the tremor-duration and slip magnitude relationship, we suggest that the well-resolved, sharp updip edge of tremor epicenters reflects a change in plate interface coupling properties. The region updip of this boundary may accumulate stress with the potential for coseismic shear failure during a megathrust earthquake. Alternatively, plate convergence in this region could be accommodated by continuous slow slip with no detectable tremor or by slow slip events with sufficiently long recurrence intervals that none have been detected during the past 10 years of GPS observations

    Triggering of the 2014 M_w7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico

    Get PDF
    Since their discovery two decades ago, slow slip events have been shown to play an important role in accommodating strain in subduction zones. However, the physical mechanisms that generate slow slip and the relationships with earthquakes are unclear. Slow slip events have been recorded in the Guerrero segment of the Cocos–North America subduction zone. Here we use inversion of position time series recorded by a continuous GPS network to reconstruct the evolution of aseismic slip on the subduction interface of the Guerrero segment. We find that a slow slip event began in February 2014, two months before the magnitude (M_w) 7.3 Papanoa earthquake on 18 April. The slow slip event initiated in a region adjacent to the earthquake hypocentre and extended into the vicinity of the seismogenic zone. This spatio-temporal proximity strongly suggests that the Papanoa earthquake was triggered by the ongoing slow slip event. We demonstrate that the triggering mechanism could be either static stress increases in the hypocentral region, as revealed by Coulomb stress modelling, or enhanced weakening of the earthquake hypocentral area by the slow slip. We also show that the plate interface in the Guerrero area is highly coupled between slow slip events, and that most of the accumulated strain is released aseismically during the slow slip episodes

    Acoustic-Friction Networks and the Evolution of Precursory Rupture Fronts in Laboratory Earthquakes

    Full text link
    We show that the mesoscopic and transport characteristics of networks follow the same trends for the same type of the shear ruptures in terms of rupture speed while also comparing the results of three different friction experiments.The classified fronts obtained from a saw cut Westerly granite fault regarding friction network parameters show a clear separation into two groups indicating two different rupture fronts. With respect to the scaling of local ruptures durations with the networks parameters we show that the gap is related to the possibility of a separation between slow and regular fronts

    Repeatability of Corticospinal and Spinal Measures during Lengthening and Shortening Contractions in the Human Tibialis Anterior Muscle

    Get PDF
    Elements of the human central nervous system (CNS) constantly oscillate. In addition, there are also methodological factors and changes in muscle mechanics during dynamic muscle contractions that threaten the stability and consistency of transcranial magnetic stimulation (TMS) and perpherial nerve stimulation (PNS) measures

    Neural adaptations to electrical stimulation strength training

    Get PDF
    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there is substantial evidence to suggest that EST modifies the excitability of specific neural paths and such adaptations contribute to the increases in MVC force. Similar to strength training with voluntary contractions, EST increases MVC force after only a few sessions with some changes in muscle biochemistry but without overt muscle hypertrophy. There is some mixed evidence for spinal neural adaptations in the form of an increase in the amplitude of the interpolated twitch and in the amplitude of the volitional wave, with less evidence for changes in spinal excitability. Cross-sectional and exercise studies also suggest that the barrage of sensory and nociceptive inputs acts at the cortical level and can modify the motor cortical output and interhemispheric paths. The data suggest that neural adaptations mediate initial increases in MVC force after short-term EST

    Neural Adaptations Associated with Interlimb Transfer in a Ballistic Wrist Flexion Task

    Get PDF
    Cross education is the process whereby training of one limb gives rise to increases in the subsequent performance of its opposite counterpart. The execution of many unilateral tasks is associated with increased excitability of corticospinal projections from primary motor cortex (M1) to the opposite limb. It has been proposed that these effects are causally related. Our aim was to establish whether changes in corticospinal excitability (CSE) arising from prior training of the opposite limb determine levels of interlimb transfer. We used three vision conditions shown previously to modulate the excitability of corticospinal projections to the inactive (right) limb during wrist flexion movements performed by the training (left) limb. These were: (1) mirrored visual feedback of the training limb; (2) no visual feedback of either limb; and (3) visual feedback of the inactive limb. Training comprised 300 discrete, ballistic wrist flexion movements executed as rapidly as possible. Performance of the right limb on the same task was assessed prior to, at the mid point of, and following left limb training. There was no evidence that variations in the excitability of corticospinal projections (assessed by transcranial magnetic stimulation (TMS)) to the inactive limb were associated with, or predictive of, the extent of interlimb transfer that was expressed. There were however associations between alterations in muscle activation dynamics observed for the untrained limb, and the degree of positive transfer that arose from training of the opposite limb. The results suggest that the acute adaptations that mediate the bilateral performance gains realized through unilateral practice of this ballistic wrist flexion task are mediated by neural elements other than those within M1 that are recruited at rest by single-pulse TMS
    • …
    corecore