157 research outputs found

    Inverse beta decay reaction in 232^{232}Th and 233^{233}U fission antineutrino flux

    Full text link
    Energy spectra of antineutrinos coming from 232^{232}Th and 233^{233}U neutron-induced fission are calculated, relevant inverse beta decay νeˉ+p→n+e+\bar{{\nu}_e}+p \to n + e^{+} positron spectra and total cross sections are found. This study is stimulated by a hypothesis that a self-sustained nuclear chain reaction is burning at the center of the Earth ("Georeactor"). The Georeactor, according to the author of this idea, provides energy necessary to sustain the Earth's magnetic field. The Georeactor's nuclear fuel is 235^{235}U and, probably, 232^{232}Th and 233^{233}U. Results of present study may appear to be useful in future experiments aimed to test the Georector hypothesis and to estimate its fuel components as a part of developments in geophysics and astrophysics based on observations of low energy antineutrinos in Nature.Comment: 6 pages in LaTeX and 2 ps figures. Submitted to Physics of Atomic Nucle

    On Possibilities of Studying of Supernova Neutrinos at BAKSAN

    Full text link
    We consider the possibilities of studying a supernova collapse neutrino burst at Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences) using the prposed 5-kt target-mass liquid scintillation spectrometer. Attention is given to the influence of mixing angle θ13{\theta}_{13} on the expected rates and spectra of neutrino events

    Neutrino Geophysics at Baksan I: Possible Detection of Georeactor Antineutrinos

    Full text link
    J.M. Herndon in 90-s proposed a natural nuclear fission georeactor at the center of the Earth with a power output of 3-10 TW as an energy source to sustain the Earth magnetic field. R.S. Raghavan in 2002 y. pointed out that under certain condition antineutrinos generated in georeactor can be detected using massive scintillation detectors. We consider the underground Baksan Neutrino Observatory (4800 m.w.e.) as a possible site for developments in Geoneutrino physics. Here the intrinsic background level of less than one event/year in a liquid scintillation ~1000 target ton detector can be achieved and the main source of background is the antineutrino flux from power reactors. We find that this flux is ~10 times lower than at KamLAND detector site and two times lower than at Gran Sasso laboratory and thus at Baksan the georeactor hypothesis can be conclusively tested. We also discuss possible search for composition of georector burning nuclear fuel by analysis of the antineutrino energy spectrum.Comment: 7 pages in LaTeX, 3 PS figures, Submitted to Physics of Atomic Nucle

    Present and Future Experiments in Non-equilibrium Reactor Antineutrino Energy Spectrum

    Full text link
    Considerable efforts that have been undertaken in the recent years in low energy antineutrino experiments require further systematic investigations in line of reactor antineutrino spectroscopy as a metrological basis of these experiments. We consider some effects associated with the non-equilibrium of reactor antineutrino radiation and residual antineutrino emission from spent reactor fuel in contemporary antineutrino experiments.Comment: 7 pages, 5 figures; Talk presented at International Conference NANP-2005, Dubna, Russia, Jun.-2005; Submitted to Phys. Atom. Nuc

    RICE Limits on the Diffuse Ultra-High Energy Neutrino Flux

    Full text link
    We present new limits on ultra-high energy neutrino fluxes above 100 PeV based on data collected by the Radio Ice Cherenkov Experiment (RICE) at the South Pole from 1999-2005. We discuss estimation of backgrounds, calibration and data analysis algorithms (both on-line and off-line), procedures used for the dedicated neutrino search, and refinements in our Monte Carlo (MC) simulation, including recent in situ measurements of the complex ice dielectric constant. An enlarged data set and a more detailed study of hadronic showers results in a sensitivity improvement of more than one order of magnitude compared to our previously published results. Examination of the full RICE data set yields zero acceptable neutrino candidates, resulting in 95% confidence-level model dependent limits on the flux (E_\nu)^2(d\phi/dE_\nu)<10^{-6} GeV/(cm^2s~sr}) in the energy range 10^{17}< E_\nu< 10^{20} eV. The new RICE results rule out the most intense flux model projections at 95% confidence level.Comment: Submitted to Astropart. Phy

    The Case for a Low Extragalactic Gamma-ray Background

    Full text link
    Measurements of the diffuse extragalactic gamma-ray background (EGRB) are complicated by a strong Galactic foreground. Estimates of the EGRB flux and spectrum, obtained by modeling the Galactic emission, have produced a variety of (sometimes conflicting) results. The latest analysis of the EGRET data found an isotropic flux I_x=1.45+-0.05 above 100 MeV, in units of 10^-5 s^-1 cm^-2 sr^-1. We analyze the EGRET data in search for robust constraints on the EGRB flux, finding the gamma-ray sky strongly dominated by Galactic foreground even at high latitudes, with no conclusive evidence for an additional isotropic component. The gamma-ray intensity measured towards the Galactic poles is similar to or lower than previous estimates of I_x. The high latitude profile of the gamma-ray data is disk-like for 40<|b[deg]|<70, and even steeper for |b|>70; overall it exhibits strong Galactic features and is well fit by a simple Galactic model. Based on the |b|>40 data we find that I_x<0.5 at a 99% confidence level, with evidence for a much lower flux. We show that correlations with Galactic tracers, previously used to identify the Galactic foreground and estimate I_x, are not satisfactory; the results depend on the tracers used and on the part of the sky examined, because the Galactic emission is not linear in the Galactic tracers and exhibits spectral variations across the sky. The low EGRB flux favored by our analysis places stringent limits on extragalactic scenarios involving gamma-ray emission, such as radiation from blazars, intergalactic shocks and production of ultra-high energy cosmic rays and neutrinos. We suggest methods by which future gamma-ray missions such as GLAST and AGILE could indirectly identify the EGRB.Comment: Accepted for publication in JCAP. Increased sizes of polar regions examined, and added discussion of spectral data. Results unchange
    • …
    corecore