27 research outputs found

    Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces

    Full text link
    The Kondo temperature TKT_K of single Co adatoms on monolayers of Ag on Cu and Au(111) is determined using Scanning Tunneling Spectroscopy. TKT_K of Co on a single monolayer of Ag on either substrate is essentially the same as that of Co on a homogenous Ag(111) crystal. This gives strong evidence that the interaction of surface Kondo impurities with the substrate is very local in nature. By comparing TKT_K found for Co on Cu, Ag, and Au (111)-surfaces we show that the energy scale of the many-electron Kondo state is insensitive to the properties of surface states and to the energetic position of the projected bulk band edges.Comment: 4 pages, 3 figure

    Kondo temperature of magnetic impurities at surfaces

    Full text link
    Based on the experimental observation, that only the close vicinity of a magnetic impurity at metal surfaces determines its Kondo behaviour, we introduce a simple model which explains the Kondo temperatures observed for cobalt adatoms at the (111) and (100) surfaces of Cu, Ag, and Au. Excellent agreement between the model and scanning tunneling spectroscopy (STS) experiments is demonstrated. The Kondo temperature is shown to depend on the occupation of the d-level determined by the hybridization between adatom and substrate with a minimum around single occupancy.Comment: 4 pages, 2 figure

    Magnetoresistance through a single molecule

    Full text link
    The use of single molecules to design electronic devices is an extremely challenging and fundamentally different approach to further downsizing electronic circuits. Two-terminal molecular devices such as diodes were first predicted [1] and, more recently, measured experimentally [2]. The addition of a gate then enabled the study of molecular transistors [3-5]. In general terms, in order to increase data processing capabilities, one may not only consider the electron's charge but also its spin [6,7]. This concept has been pioneered in giant magnetoresistance (GMR) junctions that consist of thin metallic films [8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains, however, a challenging endeavor. As an important first step in this field, we have performed an experimental and theoretical study on spin transport across a molecular GMR junction consisting of two ferromagnetic electrodes bridged by a single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first submission to Nature Nanotechnology, from May 18th, 201

    A Tunable Two-impurity Kondo system in an atomic point contact

    Full text link
    Two magnetic atoms, one attached to the tip of a Scanning Tunneling Microscope (STM) and one adsorbed on a metal surface, each constituting a Kondo system, have been proposed as one of the simplest conceivable systems potentially exhibiting quantum critical behaviour. We have succeeded in implementing this concept experimentally for cobalt dimers clamped between an STM tip and a gold surface. Control of the tip-sample distance with sub-picometer resolution allows us to tune the interaction between the two cobalt atoms with unprecedented precision. Electronic transport measurements on this two-impurity Kondo system reveal a rich physical scenario which is governed by a crossover from local Kondo screening to non-local singlet formation due to antiferromagnetic coupling as a function of separation of the cobalt atoms.Comment: 22 pages, 5 figure

    Kondo state of Co impurities at noble metal surfaces

    No full text
    We use scanning tunneling microscopy and spectroscopy to study the properties of magnetic Co adatoms on noble metal surfaces at 6 K. Due to spin-flip scattering of the substrate electrons at the impurity the many-body Kondo state forms. This state is characterized by an energy, the Kondo temperature T-K. We measure T-K of adatom systems and a resonant scattering phase shift locally and are thus able to discuss the coupling of the Co adatom to the metal electronic system. From the resonant scattering phase shift of the surface-state electrons scattering off a Co adatom on Ag(111), we find that the coupling to the surface state is rather weak. On the other hand, increasing the number of nearest neighbor substrate atoms increases the coupling of a Co adatom to the host metal and increases TK. This shows the dominant character of the coupling of the Co atom to the bulk states of the substrate crystal.</p

    Design catalogues and their usage

    No full text
    corecore