9,929 research outputs found
Aging under Shear: Structural Relaxation of a Non-Newtonian Fluid
The influence of an applied shear field on the dynamics of an aging colloidal
suspension has been investigated by the dynamic light scattering determination
of the density autocorrelation function. Though a stationary state is never
observed, the slow dynamics crosses between two different non-equilibrium
regimes as soon as the structural relaxation time approaches the inverse shear
rate. In the shear dominated regime (at high shear rate values) the structural
relaxation time is found to be strongly sensitive to shear rate while aging
proceeds at a very slow rate. The effect of shear on the detailed shape of the
density autocorrelation function is quantitatively described assuming that the
structural relaxation process arises from the heterogeneous superposition of
many relaxing units each one independently coupled to shear with a parallel
composition rule for timescales.Comment: 5 pages, 5 figure
Quasi-saddles as relevant points of the potential energy surface in the dynamics of supercooled liquids
The supercooled dynamics of a Lennard-Jones model liquid is numerically
investigated studying relevant points of the potential energy surface, i.e. the
minima of the square gradient of total potential energy . The main findings
are: ({\it i}) the number of negative curvatures of these sampled points
appears to extrapolate to zero at the mode coupling critical temperature ;
({\it ii}) the temperature behavior of has a close relationship with the
temperature behavior of the diffusivity; ({\it iii}) the potential energy
landscape shows an high regularity in the distances among the relevant points
and in their energy location. Finally we discuss a model of the landscape,
previously introduced by Madan and Keyes [J. Chem. Phys. {\bf 98}, 3342
(1993)], able to reproduce the previous findings.Comment: To be published in J. Chem. Phy
Intra-molecular origin of the fast relaxations observed in the Brillouin light scattering spectra of molecular glass-formers
The Brillouin light scattering spectra of the o-terphenyl single crystal are
compared with those of the liquid and the glass phases. This shows: i) the
direct evidence of a fast relaxation at 5 GHz in both the single crystal and
the glass; ii) a similar temperature dependence for the attenuation of the
longitudinal sound waves in the single crystal and the glass; and iii) the
absence of coupling between the fast relaxation and the transverse acoustic
waves. These results allow us to assign such a relaxation to the coupling
between the longitudinal acoustic waves and intra-molecular vibrations, and
therefore to exclude any relationship between it and the glass transition.Comment: 4 Pages, 4 Figure
Holographic tracking and sizing of optically trapped microprobes in diamond anvil cells
We demonstrate that Digital Holographic Microscopy can be used for accurate 3D tracking and sizing of a colloidal probe trapped in a diamond anvil cell (DAC). Polystyrene beads were optically trapped in water up to Gigapascal pressures while simultaneously recording in-line holograms at 1 KHz frame rate. Using Lorenz-Mie scattering theory to fit interference patterns, we detected a 10% shrinking in the bead’s radius due to the high applied pressure. Accurate bead sizing is crucial for obtaining reliable viscosity measurements and provides a convenient optical tool for the determination of the bulk modulus of probe material. Our technique may provide a new method for pressure measurements inside a DAC
Aging after shear rejuvenation in a soft glassy colloidal suspension: evidence for two different regimes
The aging dynamics after shear rejuvenation in a glassy, charged clay
suspension have been investigated through dynamic light scattering (DLS). Two
different aging regimes are observed: one is attained if the sample is
rejuvenated before its gelation and one after the rejuvenation of the gelled
sample. In the first regime, the application of shear fully rejuvenates the
sample, as the system dynamics soon after shear cessation follow the same aging
evolution characteristic of normal aging. In the second regime, aging proceeds
very fast after shear rejuvenation, and classical DLS cannot be used. An
original protocol to measure an ensemble averaged intensity correlation
function is proposed and its consistency with classical DLS is verified. The
fast aging dynamics of rejuvenated gelled samples exhibit a power law
dependence of the slow relaxation time on the waiting time.Comment: 7 pages, 6 figure
Non-dynamic origin of the acoustic attenuation at high frequency in glasses
The sound attenuation in the THz region is studied down to T=16 K in glassy
glycerol by inelastic x-ray scattering. At striking variance with the decrease
found below 100 K in the GHz data, the attenuation in the THz range does not
show any T dependence. This result i) indicates the presence of two different
attenuation mechanisms, active respectively in the high and low frequency
limits; ii) demonstrates the non-dynamic origin of the attenuation of THz sound
waves, and confirms a similar conclusion obtained in SiO2 glass by molecular
dynamics; and iii) supports the low frequency attenuation mechanism proposed by
Fabian and Allen (Phys.Rev.Lett. 82, 1478 (1999)).Comment: 3 pages, 5 Figures, To be published in PR
- …
