9,929 research outputs found

    Aging under Shear: Structural Relaxation of a Non-Newtonian Fluid

    Full text link
    The influence of an applied shear field on the dynamics of an aging colloidal suspension has been investigated by the dynamic light scattering determination of the density autocorrelation function. Though a stationary state is never observed, the slow dynamics crosses between two different non-equilibrium regimes as soon as the structural relaxation time approaches the inverse shear rate. In the shear dominated regime (at high shear rate values) the structural relaxation time is found to be strongly sensitive to shear rate while aging proceeds at a very slow rate. The effect of shear on the detailed shape of the density autocorrelation function is quantitatively described assuming that the structural relaxation process arises from the heterogeneous superposition of many relaxing units each one independently coupled to shear with a parallel composition rule for timescales.Comment: 5 pages, 5 figure

    Quasi-saddles as relevant points of the potential energy surface in the dynamics of supercooled liquids

    Full text link
    The supercooled dynamics of a Lennard-Jones model liquid is numerically investigated studying relevant points of the potential energy surface, i.e. the minima of the square gradient of total potential energy VV. The main findings are: ({\it i}) the number of negative curvatures nn of these sampled points appears to extrapolate to zero at the mode coupling critical temperature TcT_c; ({\it ii}) the temperature behavior of n(T)n(T) has a close relationship with the temperature behavior of the diffusivity; ({\it iii}) the potential energy landscape shows an high regularity in the distances among the relevant points and in their energy location. Finally we discuss a model of the landscape, previously introduced by Madan and Keyes [J. Chem. Phys. {\bf 98}, 3342 (1993)], able to reproduce the previous findings.Comment: To be published in J. Chem. Phy

    Intra-molecular origin of the fast relaxations observed in the Brillouin light scattering spectra of molecular glass-formers

    Full text link
    The Brillouin light scattering spectra of the o-terphenyl single crystal are compared with those of the liquid and the glass phases. This shows: i) the direct evidence of a fast relaxation at 5 GHz in both the single crystal and the glass; ii) a similar temperature dependence for the attenuation of the longitudinal sound waves in the single crystal and the glass; and iii) the absence of coupling between the fast relaxation and the transverse acoustic waves. These results allow us to assign such a relaxation to the coupling between the longitudinal acoustic waves and intra-molecular vibrations, and therefore to exclude any relationship between it and the glass transition.Comment: 4 Pages, 4 Figure

    Holographic tracking and sizing of optically trapped microprobes in diamond anvil cells

    Get PDF
    We demonstrate that Digital Holographic Microscopy can be used for accurate 3D tracking and sizing of a colloidal probe trapped in a diamond anvil cell (DAC). Polystyrene beads were optically trapped in water up to Gigapascal pressures while simultaneously recording in-line holograms at 1 KHz frame rate. Using Lorenz-Mie scattering theory to fit interference patterns, we detected a 10% shrinking in the bead’s radius due to the high applied pressure. Accurate bead sizing is crucial for obtaining reliable viscosity measurements and provides a convenient optical tool for the determination of the bulk modulus of probe material. Our technique may provide a new method for pressure measurements inside a DAC

    Aging after shear rejuvenation in a soft glassy colloidal suspension: evidence for two different regimes

    Full text link
    The aging dynamics after shear rejuvenation in a glassy, charged clay suspension have been investigated through dynamic light scattering (DLS). Two different aging regimes are observed: one is attained if the sample is rejuvenated before its gelation and one after the rejuvenation of the gelled sample. In the first regime, the application of shear fully rejuvenates the sample, as the system dynamics soon after shear cessation follow the same aging evolution characteristic of normal aging. In the second regime, aging proceeds very fast after shear rejuvenation, and classical DLS cannot be used. An original protocol to measure an ensemble averaged intensity correlation function is proposed and its consistency with classical DLS is verified. The fast aging dynamics of rejuvenated gelled samples exhibit a power law dependence of the slow relaxation time on the waiting time.Comment: 7 pages, 6 figure

    Non-dynamic origin of the acoustic attenuation at high frequency in glasses

    Full text link
    The sound attenuation in the THz region is studied down to T=16 K in glassy glycerol by inelastic x-ray scattering. At striking variance with the decrease found below 100 K in the GHz data, the attenuation in the THz range does not show any T dependence. This result i) indicates the presence of two different attenuation mechanisms, active respectively in the high and low frequency limits; ii) demonstrates the non-dynamic origin of the attenuation of THz sound waves, and confirms a similar conclusion obtained in SiO2 glass by molecular dynamics; and iii) supports the low frequency attenuation mechanism proposed by Fabian and Allen (Phys.Rev.Lett. 82, 1478 (1999)).Comment: 3 pages, 5 Figures, To be published in PR
    corecore