8,708 research outputs found

    A Hamiltonian functional for the linearized Einstein vacuum field equations

    Full text link
    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained.Comment: 5 pages, accepted in J. Phys.: Conf. Serie

    Local continuity laws on the phase space of Einstein equations with sources

    Full text link
    Local continuity equations involving background fields and variantions of the fields, are obtained for a restricted class of solutions of the Einstein-Maxwell and Einstein-Weyl theories using a new approach based on the concept of the adjoint of a differential operator. Such covariant conservation laws are generated by means of decoupled equations and their adjoints in such a way that the corresponding covariantly conserved currents possess some gauge-invariant properties and are expressed in terms of Debye potentials. These continuity laws lead to both a covariant description of bilinear forms on the phase space and the existence of conserved quantities. Differences and similarities with other approaches and extensions of our results are discussed.Comment: LaTeX, 13 page
    • …
    corecore