285 research outputs found

    Structural characterization of the M* partly folded intermediate of wild-type and P138A EcAspAT

    No full text
    A combination of spectroscopic techniques, hydrogen/deuterium exchange, and limited proteolysis experiments coupled to mass spectrometry analysis was used to depict the topology of the monomeric M*partly folded intermediate of aspartate aminotransferase from Escherichia coli in wild type (WT) as well as in a mutant form in which the highly conserved cis-proline at position 138 was replaced by a trans-alanine (P138A). Fluorescence analysis indicates that, although M* is an off-pathway intermediate in the folding of WT aspartate aminotransferase from E. coli, it seems to coincide with an on-pathway folding intermediate for the P138A mutant. Spectroscopic data, hydrogen/deuterium exchange, and limited proteolysis experiments demonstrated the occurrence of conformational differences between the two M*intermediates, with P138A-M* being conceivably more compact than WT-M*. Limited proteolysis data suggested that these conformational differences might be related to a different relative orientation of the small and large domains of the protein induced by the presence of the cis-proline residue at position 138. These differences between the two M* species indicated that in WT-M* Pro138 is in the cis conformation at this stage of the folding process. Moreover, hydrogen/deuterium exchange results showed the occurrence of few differences in the native N2 forms of WT and P138A, the spectroscopic features and crystallographic structures of which are almost superimposabl

    Proteomic approach for the detection of biomarkers ofexposure in mussels exposed to PCB

    Get PDF
    In the current study, a preliminary proteomic approach has been used in Mytilus galloprovincialis as a screening of changes in protein expression caused by a mixture of polychlorinated biphenyls (PCBs), in order to characterize the effects of PCBs on the protein profile and to develop new molecular biomarkers, after identifying the proteins more drastically altered. Methods:Mussels were exposed for three weeks to three polychlorinated biphenyls under controlled conditions. The edible parts were homogenized and lyophilized. Extracted proteins were quantified and separated by two-dimensional electrophoresis (2-DE) in IPG strips (pH 3–10). The protein spots in gels were visualized by Coomassie Brilliant Blue staining. Gel images were obtained using a Image Scanner. Image analysis included spot detection, quantification and matching. The volume of each spot from each gel was normalized to the total gel spot volume in order to correct it for differences in gel staining. More than 500 spots were resolved and altered expression was qualitatively detected. Results and conclusions of the study: Our results showed a well conserved protein pattern regardless of the treatments, demonstrating that the exposition to the PCB mixture did not impair the normal physiological function of the mussels. However, the levels of a restricted number of proteins were clearly and reproducibly affected by the treatment; therefore, these polypeptides were considered promising biomarker candidates. In conclusion, even if further studies are needed to validate these findings, our data demonstrated that proteomic approach represents a valuable tool for identifying biomarkers of exposure to environmental contaminants

    Molecular basis of phospholipase A2 inhibition by petrosaspongiolide M.

    Get PDF
    Petrosaspongiolide M (PM) is an anti-inflammatory marine metabolite that displays a potent inhibitory activity toward group II and III secretory phospholipase A2 (PLA2) enzymes. The details of the mechanism, which leads to a covalent adduct between PLA2 and γ-hydroxybutenolide-containing molecules such as PM, are still a matter of debate. In this paper the covalent binding of PM to bee venom PLA2 has been investigated by mass spectrometry and molecular modeling. The mass increment observed for the PM-PLA2 adduct is consistent with the formation of a Schiff base by reaction of a PLA2 amino group with the hemiacetal function (masked aldehyde) at the C-25 atom of the PM γ-hydroxybutenolide ring. Proteolysis of the modified PLA2 by the endoprotease LysC followed by HPLC MS analysis allowed us to establish that the PLA2 α-amino terminal group of the lle-1 residue was the only covalent binding site for PM. The stoichiometry of the reaction between PM and PLA2 was also monitored and results showed that even with excess inhibitor, the prevalent product is a 1:1 (inhibitor:enzyme) adduct, although a 2:1 adduct is present as a minor component. The 2:1 adduct was also characterized, which showed that the second site of reaction is located at the ε-amino group of the Lys-85 residue. Similar results in terms of the reaction profile, mass increments, and location of the PLA2 binding site were obtained for manoalide, a paradigm for irreversible PLA2 inhibitors, which suggests that the present results may be considered of more general interest within the field of anti-inflammatory sesterterpenes that contain the γ-hydroxybutenolide pharmacophore. Finally, a 3D model, constrained by the above experimental results, was obtained by docking the inhibitor molecule into the PLA2 binding site through AFFINITY calculations. The model provides an interesting insight into the PM-PLA2 inhibition process and may prove useful in the design of new anti-inflammatory agents that target PLA2 secretory enzymes

    Natural iminosugar (+)-lentiginosine inhibits ATPase and chaperone activity of Hsp90

    Get PDF
    Heat shock protein 90 (Hsp90) is a significant target in the development of rational cancer therapy due to its role at the crossroads of multiple signaling pathways associated with cell proliferation and cell viability. The relevance of Hsp90 as a therapeutic target for numerous diseases states has prompted the identification and optimization of novel Hsp90 inhibitors as an emerging therapeutic strategy. We performed a screening aimed to identify novel Hsp90 inhibitors among several natural compounds and we focused on the iminosugar (+)-lentiginosine, a natural amyloglucosidases inhibitor, for its peculiar bioactivity profile. Characterization of Hsp90 inhibition was performed using a panel of chemical and biological approaches, including limited proteolysis, biochemical and cellular assays. Our result suggested that the middle domain of Hsp90, as opposed to its ATP-binding pocket, is a promising binding site for new classes of Hsp90 inhibitors with multi-target anti-cancer potential

    Permian high-temperature metamorphism in the Western Alps (NW Italy)

    Get PDF
    During the late Palaeozoic, lithospheric thinning in part of the Alpine realm caused high-temperature low-to-medium pressure metamorphism and partial melting in the lower crust. Permian metamorphism and magmatism has extensively been recorded and dated in the Central, Eastern, and Southern Alps. However, Permian metamorphic ages in the Western Alps so far are constrained by very few and sparsely distributed data. The present study fills this gap. We present U/Pb ages of metamorphic zircon from several Adria-derived continental units now situated in the Western Alps, defining a range between 286 and 266 Ma. Trace element thermometry yields temperatures of 580-890°C from Ti-in-zircon and 630-850°C from Zr-in-rutile for Permian metamorphic rims. These temperature estimates, together with preserved mineral assemblages (garnet-prismatic sillimanite-biotite-plagioclase-quartz-K-feldspar-rutile), define pervasive upper-amphibolite to granulite facies conditions for Permian metamorphism. U/Pb ages from this study are similar to Permian ages reported for the Ivrea Zone in the Southern Alps and Austroalpine units in the Central and Eastern Alps. Regional comparison across the former Adriatic and European margin reveals a complex pattern of ages reported from late Palaeozoic magmatic and metamorphic rocks (and relics thereof): two late Variscan age groups (~330 and ~300 Ma) are followed seamlessly by a broad range of Permian ages (300-250 Ma). The former are associated with late-orogenic collapse; in samples from this study these are weakly represented. Clearly, dominant is the Permian group, which is related to crustal thinning, hinting to a possible initiation of continental rifting along a passive margin

    U and Th content in the Central Apennines continental crust: a contribution to the determination of the geo-neutrinos flux at LNGS

    Full text link
    The regional contribution to the geo-neutrino signal at Gran Sasso National Laboratory (LNGS) was determined based on a detailed geological, geochemical and geophysical study of the region. U and Th abundances of more than 50 samples representative of the main lithotypes belonging to the Mesozoic and Cenozoic sedimentary cover were analyzed. Sedimentary rocks were grouped into four main "Reservoirs" based on similar paleogeographic conditions and mineralogy. Basement rocks do not outcrop in the area. Thus U and Th in the Upper and Lower Crust of Valsugana and Ivrea-Verbano areas were analyzed. Based on geological and geophysical properties, relative abundances of the various reservoirs were calculated and used to obtain the weighted U and Th abundances for each of the three geological layers (Sedimentary Cover, Upper and Lower Crust). Using the available seismic profile as well as the stratigraphic records from a number of exploration wells, a 3D modelling was developed over an area of 2^{\circ}x2^{\circ} down to the Moho depth, for a total volume of about 1.2x10^6 km^3. This model allowed us to determine the volume of the various geological layers and eventually integrate the Th and U contents of the whole crust beneath LNGS. On this base the local contribution to the geo-neutrino flux (S) was calculated and added to the contribution given by the rest of the world, yielding a Refined Reference Model prediction for the geo-neutrino signal in the Borexino detector at LNGS: S(U) = (28.7 \pm 3.9) TNU and S(Th) = (7.5 \pm 1.0) TNU. An excess over the total flux of about 4 TNU was previously obtained by Mantovani et al. (2004) who calculated, based on general worldwide assumptions, a signal of 40.5 TNU. The considerable thickness of the sedimentary rocks, almost predominantly represented by U- and Th- poor carbonatic rocks in the area near LNGS, is responsible for this difference.Comment: 45 pages, 5 figures, 12 tables; accepted for publication in GC

    Sulfur isotope evolution in sulfide ores from Western Alps: Assessing the influence of subduction-related metamorphism

    Get PDF
    Sulfides entering subduction zones can play an important role in the release of sulfur and metals to the mantle wedge and contribute to the formation of volcanic arc-associated ores. Fractionation of stable sulfur isotopes recorded by sulfides during metamorphism can provide evidence of fluid-rock interactions during metamorphism and give insights on sulfur mobilization. A detailed microtextural and geochemical study was performed on mineralized samples from two ocean floor-related sulfide deposits (Servette and Beth-Ghinivert) in high-pressure units of the Italian Western Alps, which underwent different metamorphic evolutions. The combination of microtextural investigations with d34S values from in situ ion probe analyses within individual pyrite and chalcopyrite grains allowed evaluation of the effectiveness of metamorphism in modifying the isotopic record and mobilizing sulfur and metals and have insights on fluid circulation within the slab. Textures and isotopic compositions inherited from the protolith are recorded at Beth-Ghinivert, where limited metamorphic recrystallization is attributed to limited interaction with metamorphic fluids. Isotopic modification by metamorphic processes occurred only at the submillimeter scale at Servette, where local interactions with infiltrating hydrothermal fluid are recorded by metamorphic grains. Notwithstanding the differences recorded by the two deposits, neither underwent intensive isotopic reequilibration or records evidence of intense fluid-rock interaction and S mobilization during metamorphism. Therefore, subducted sulfide deposits dominated by pyrite and chalcopyrite are unlikely to release significant quantities of sulfur to the mantle wedge and to arc magmatism sources at metamorphic grades below the lower eclogite facies

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
    corecore