32,371 research outputs found

    Advanced general aviation comparative engine/airframe integration study

    Get PDF
    The NASA Advanced Aviation Comparative Engine/Airframe Integration Study was initiated to help determine which of four promising concepts for new general aviation engines for the 1990's should be considered for further research funding. The engine concepts included rotary, diesel, spark ignition, and turboprop powerplants; a conventional state-of-the-art piston engine was used as a baseline for the comparison. Computer simulations of the performance of single and twin engine pressurized aircraft designs were used to determine how the various characteristics of each engine interacted in the design process. Comparisons were made of how each engine performed relative to the others when integrated into an airframe and required to fly a transportation mission

    What if the Higgs Boson Weighs 115 GeV?

    Get PDF
    If the Higgs boson indeed weighs about 114 to 115 GeV, there must be new physics beyond the Standard Model at some scale \la 10^6 GeV. The most plausible new physics is supersymmetry, which predicts a Higgs boson weighing \la 130 GeV. In the CMSSM with R and CP conservation, the existence, production and detection of a 114 or 115 GeV Higgs boson is possible if \tan\beta \ga 3. However, for the radiatively-corrected Higgs mass to be this large, sparticles should be relatively heavy: m_{1/2} \ga 250 GeV, probably not detectable at the Tevatron collider and perhaps not at a low-energy e^+ e^- linear collider. In much of the remaining CMSSM parameter space, neutralino-stau coannihilation is important for calculating the relic neutralino density, and we explore implications for the elastic neutralino-nucleon scattering cross section.Comment: 17 pages, 5 eps figure

    Constraints on Inflationary Solutions in the Presence of Shear and Bulk Viscosity

    Get PDF
    Inflationary models and their claim to solve many of the outstanding problems in cosmology have been the subject of a great deal of debate over the last few years. A major sticking point has been the lack of both good observational and theoretical arguments to single out one particular model out of the many that solve these problems. Here we examine the degree of restrictiveness on the dynamical relationship between the cosmological scale factor and the inflation driving self-interaction potential of a minimally coupled scalar field, imposed by the condition that the scalar field is required to be real during a classical regime (the reality condition). We systema\-tically look at the effects of this constraint on many of the inflationary models found in the literature within the FLRW framework, and also look at what happens when physically motivated perturbations such as shear and bulk viscosity are introduced. We find that in many cases, either the models are totally excluded or the reality condition gives rise to constraints on the scale factor and on the various parameters of the model.Comment: 21 pages, LaTe

    Exact non-equilibrium solutions of the Einstein-Boltzmann equations. II

    Get PDF
    We find exact solutions of the Einstein-Boltzmann equations with relaxational collision term in FRW and Bianchi I spacetimes. The kinematic and thermodynamic properties of the solutions are investigated. We give an exact expression for the bulk viscous pressure of an FRW distribution that relaxes towards collision-dominated equilibrium. If the relaxation is toward collision-free equilibrium, the bulk viscosity vanishes - but there is still entropy production. The Bianchi I solutions have zero heat flux and bulk viscosity, but nonzero shear viscosity. The solutions are used to construct a realisation of the Weyl Curvature Hypothesis.Comment: 16 pages LaTex, CQG documentstyle (ioplppt

    Gravitational-Recoil Effects on Fermion Propagation in Space-Time Foam

    Get PDF
    Motivated by the possible experimental opportunities to test quantum gravity via its effects on high-energy neutrinos propagating through space-time foam, we discuss how to incorporate spin structures in our D-brane description of gravitational recoil effects in vacuo. We also point to an interesting analogous condensed-matter system. We use a suitable supersymmetrization of the Born-Infeld action for excited D-brane gravitational backgrounds to argue that energetic fermions may travel slower than the low-energy velocity of light: \delta c / c \sim -E/M. It has been suggested that Gamma-Ray Bursters may emit pulses of neutrinos at energies approaching 10^{19} eV: these would be observable only if M \gsim 10^{27} GeV.Comment: 18 pages LaTe

    Integrability of irrotational silent cosmological models

    Full text link
    We revisit the issue of integrability conditions for the irrotational silent cosmological models. We formulate the problem both in 1+3 covariant and 1+3 orthonormal frame notation, and show there exists a series of constraint equations that need to be satisfied. These conditions hold identically for FLRW-linearised silent models, but not in the general exact non-linear case. Thus there is a linearisation instability, and it is highly unlikely that there is a large class of silent models. We conjecture that there are no spatially inhomogeneous solutions with Weyl curvature of Petrov type I, and indicate further issues that await clarification.Comment: Minor corrections and improvements; 1 new reference; to appear Class. Quantum Grav.; 16 pages Ioplpp

    Geodesic Deviation Equation in Bianchi Cosmologies

    Full text link
    We present the Geodesic Deviation Equation (GDE) for the Friedmann-Robertson-Walker(FRW) universe and we compare it with the equation for Bianchi type I model. We justify consider this cosmological model due to the recent importance the Bianchi Models have as alternative models in cosmology. The main property of these models, solutions of Einstein Field Equations (EFE) is that they are homogeneous as the FRW model but they are not isotropic. We can see this because they have a non-null Weyl tensor in the GDE.Comment: Submitted to Journal of Physics: Conference Series (JPCS), ERE200

    Successive Combination Jet Algorithm For Hadron Collisions

    Full text link
    Jet finding algorithms, as they are used in e+e−e^+ e^- and hadron collisions, are reviewed and compared. It is suggested that a successive combination style algorithm, similar to that used in e+e−e^+ e^- physics, might be useful also in hadron collisions, where cone style algorithms have been used previously.Comment: 18 pages plus four uuencoded postscript figures, REVTEX 3.0, CERN-TH.6860/9

    Distance Measurement and Wave Dispersion in a Liouville-String Approach to Quantum Gravity

    Get PDF
    Within a Liouville approach to non-critical string theory, we discuss space-time foam effects on the propagation of low-energy particles. We find an induced frequency-dependent dispersion in the propagation of a wave packet, and observe that this would affect the outcome of measurements involving low-energy particles as probes. In particular, the maximum possible order of magnitude of the space-time foam effects would give rise to an error in the measurement of distance comparable to that independently obtained in some recent heuristic quantum-gravity analyses. We also briefly compare these error estimates with the precision of astrophysical measurements.Comment: 20 pages, LaTe
    • 

    corecore