32,371 research outputs found
Advanced general aviation comparative engine/airframe integration study
The NASA Advanced Aviation Comparative Engine/Airframe Integration Study was initiated to help determine which of four promising concepts for new general aviation engines for the 1990's should be considered for further research funding. The engine concepts included rotary, diesel, spark ignition, and turboprop powerplants; a conventional state-of-the-art piston engine was used as a baseline for the comparison. Computer simulations of the performance of single and twin engine pressurized aircraft designs were used to determine how the various characteristics of each engine interacted in the design process. Comparisons were made of how each engine performed relative to the others when integrated into an airframe and required to fly a transportation mission
What if the Higgs Boson Weighs 115 GeV?
If the Higgs boson indeed weighs about 114 to 115 GeV, there must be new
physics beyond the Standard Model at some scale \la 10^6 GeV. The most
plausible new physics is supersymmetry, which predicts a Higgs boson weighing
\la 130 GeV. In the CMSSM with R and CP conservation, the existence, production
and detection of a 114 or 115 GeV Higgs boson is possible if \tan\beta \ga 3.
However, for the radiatively-corrected Higgs mass to be this large, sparticles
should be relatively heavy: m_{1/2} \ga 250 GeV, probably not detectable at the
Tevatron collider and perhaps not at a low-energy e^+ e^- linear collider. In
much of the remaining CMSSM parameter space, neutralino-stau coannihilation is
important for calculating the relic neutralino density, and we explore
implications for the elastic neutralino-nucleon scattering cross section.Comment: 17 pages, 5 eps figure
Constraints on Inflationary Solutions in the Presence of Shear and Bulk Viscosity
Inflationary models and their claim to solve many of the outstanding problems
in cosmology have been the subject of a great deal of debate over the last few
years. A major sticking point has been the lack of both good observational and
theoretical arguments to single out one particular model out of the many that
solve these problems. Here we examine the degree of restrictiveness on the
dynamical relationship between the cosmological scale factor and the inflation
driving self-interaction potential of a minimally coupled scalar field, imposed
by the condition that the scalar field is required to be real during a
classical regime (the reality condition). We systema\-tically look at the
effects of this constraint on many of the inflationary models found in the
literature within the FLRW framework, and also look at what happens when
physically motivated perturbations such as shear and bulk viscosity are
introduced. We find that in many cases, either the models are totally excluded
or the reality condition gives rise to constraints on the scale factor and on
the various parameters of the model.Comment: 21 pages, LaTe
Exact non-equilibrium solutions of the Einstein-Boltzmann equations. II
We find exact solutions of the Einstein-Boltzmann equations with relaxational
collision term in FRW and Bianchi I spacetimes. The kinematic and thermodynamic
properties of the solutions are investigated. We give an exact expression for
the bulk viscous pressure of an FRW distribution that relaxes towards
collision-dominated equilibrium. If the relaxation is toward collision-free
equilibrium, the bulk viscosity vanishes - but there is still entropy
production. The Bianchi I solutions have zero heat flux and bulk viscosity, but
nonzero shear viscosity. The solutions are used to construct a realisation of
the Weyl Curvature Hypothesis.Comment: 16 pages LaTex, CQG documentstyle (ioplppt
Gravitational-Recoil Effects on Fermion Propagation in Space-Time Foam
Motivated by the possible experimental opportunities to test quantum gravity
via its effects on high-energy neutrinos propagating through space-time foam,
we discuss how to incorporate spin structures in our D-brane description of
gravitational recoil effects in vacuo. We also point to an interesting
analogous condensed-matter system. We use a suitable supersymmetrization of the
Born-Infeld action for excited D-brane gravitational backgrounds to argue that
energetic fermions may travel slower than the low-energy velocity of light:
\delta c / c \sim -E/M. It has been suggested that Gamma-Ray Bursters may emit
pulses of neutrinos at energies approaching 10^{19} eV: these would be
observable only if M \gsim 10^{27} GeV.Comment: 18 pages LaTe
Integrability of irrotational silent cosmological models
We revisit the issue of integrability conditions for the irrotational silent
cosmological models. We formulate the problem both in 1+3 covariant and 1+3
orthonormal frame notation, and show there exists a series of constraint
equations that need to be satisfied. These conditions hold identically for
FLRW-linearised silent models, but not in the general exact non-linear case.
Thus there is a linearisation instability, and it is highly unlikely that there
is a large class of silent models. We conjecture that there are no spatially
inhomogeneous solutions with Weyl curvature of Petrov type I, and indicate
further issues that await clarification.Comment: Minor corrections and improvements; 1 new reference; to appear Class.
Quantum Grav.; 16 pages Ioplpp
Geodesic Deviation Equation in Bianchi Cosmologies
We present the Geodesic Deviation Equation (GDE) for the
Friedmann-Robertson-Walker(FRW) universe and we compare it with the equation
for Bianchi type I model. We justify consider this cosmological model due to
the recent importance the Bianchi Models have as alternative models in
cosmology. The main property of these models, solutions of Einstein Field
Equations (EFE) is that they are homogeneous as the FRW model but they are not
isotropic. We can see this because they have a non-null Weyl tensor in the GDE.Comment: Submitted to Journal of Physics: Conference Series (JPCS), ERE200
Successive Combination Jet Algorithm For Hadron Collisions
Jet finding algorithms, as they are used in and hadron collisions,
are reviewed and compared. It is suggested that a successive combination style
algorithm, similar to that used in physics, might be useful also in
hadron collisions, where cone style algorithms have been used previously.Comment: 18 pages plus four uuencoded postscript figures, REVTEX 3.0,
CERN-TH.6860/9
Distance Measurement and Wave Dispersion in a Liouville-String Approach to Quantum Gravity
Within a Liouville approach to non-critical string theory, we discuss
space-time foam effects on the propagation of low-energy particles. We find an
induced frequency-dependent dispersion in the propagation of a wave packet, and
observe that this would affect the outcome of measurements involving low-energy
particles as probes. In particular, the maximum possible order of magnitude of
the space-time foam effects would give rise to an error in the measurement of
distance comparable to that independently obtained in some recent heuristic
quantum-gravity analyses. We also briefly compare these error estimates with
the precision of astrophysical measurements.Comment: 20 pages, LaTe
- âŠ