937 research outputs found

    Transfer ionization and its sensitivity to the ground-state wave function

    Full text link
    We present kinematically complete theoretical calculations and experiments for transfer ionization in H++^++He collisions at 630 keV/u. Experiment and theory are compared on the most detailed level of fully differential cross sections in the momentum space. This allows us to unambiguously identify contributions from the shake-off and two-step-2 mechanisms of the reaction. It is shown that the simultaneous electron transfer and ionization is highly sensitive to the quality of a trial initial-state wave function

    Interatomic-Coulombic-decay-induced recapture of photoelectrons in helium dimers

    Full text link
    We investigate the onset of photoionization shakeup induced interatomic Coulombic decay (ICD) in He2 at the He+*(n = 2) threshold by detecting two He+ ions in coincidence. We find this threshold to be shifted towards higher energies compared to the same threshold in the monomer. The shifted onset of ion pairs created by ICD is attributed to a recapture of the threshold photoelectron after the emission of the faster ICD electron.Comment: 5 Pages, 2 Figure

    Double photo-ionization of He near a polarizable surface

    Full text link
    We calculate the differential cross-section of the direct double photo-ionization of He physisorbed on a polarizable surface. By including the influence of the surface potential in the correlated two-electron final state wavefunction, we show that the differential cross-section carries detailed information on the electronic correlations at the surface. In particular, photo-emission along opposite directions, which is prohibited in the free space, is allowed if the surface potential is long-ranged.Comment: To appear in Phys. Rev. B - Rapid Comm. - 4 pages, 2 PostScript figures embedde

    Vibrationally Resolved Decay Width of Interatomic Coulombic Decay in HeNe

    Full text link
    We investigate the ionization of HeNe from below the He 1s3p excitation to the He ionization threshold. We observe HeNe+^+ ions with an enhancement by more than a factor of 60 when the He side couples resonantly to the radiation field. These ions are an experimental proof of a two-center resonant photoionization mechanism predicted by Najjari et al. [Phys. Rev. Lett. 105, 153002 (2010)]. Furthermore, our data provide electronic and vibrational state resolved decay widths of interatomic Coulombic decay (ICD) in HeNe dimers. We find that the ICD lifetime strongly increases with increasing vibrational state.Comment: 7 pages, 5 figure

    Data for the co-expression and purification of human recombinant CaMKK2 in complex with calmodulin in Escherichia coli

    Get PDF
    AbstractCalcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 ‘apo’, CaMKK2 (165-501) in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, “Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2” [1]

    Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2

    Get PDF
    Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in the regulation of metabolic activity in cancer and immune cells, and affects whole-body metabolism by regulating ghrelinsignalling in the hypothalamus. This has led to efforts to develop specific CaMKK2 inhibitors, and STO- 609 is the standardly used CaMKK2 inhibitor to date. We have developed a novel fluorescence-based assay by exploiting the intrinsic fluorescence properties of STO-609. Here, we report an in vitro binding constant of KD ~17 nM between STO-609 and purified CaMKK2 or CaMKK2:Calmodulin complex. Whereas high concentrations of ATP were able to displace STO-609 from the kinase, GTP was unable to achieve this confirming the specificity of this association. Recent structural studies on the kinase domain of CaMKK2 had implicated a number of amino acids involved in the binding of STO-609. Our fluorescent assay enabled us to confirm that Phe267 is critically important for this association since mutation of this residue to a glycine abolished the binding of STO-609. An ATP replacement assay, as well as the mutation of the ‘gatekeeper’ amino acid Phe267Gly, confirmed the specificity of the assay and once more confirmed the strong binding of STO-609 to the kinase. In further characterising the purified kinase and kinasecalmodulin complex we identified a number of phosphorylation sites some of which corroborated previously reported CaMKK2 phosphorylation and some of which, particularly in the activation segment, were novel phosphorylation events. In conclusion, the intrinsic fluorescent properties of STO-609 provide a great opportunity to utilise this drug to label the ATP-binding pocket and probe the impact of mutations and other regulatory modifications and interactions on the pocket. It is however clear that the number of phosphorylation sites on CaMKK2 will pose a challenge in studying the impact of phosphorylation on the pocket unless the field can develop approaches to control the spectrum of modifications that occur during recombinant protein expression in Escherichia coli.</p

    Co-Evolution of quasispecies: B-cell mutation rates maximize viral error catastrophes

    Full text link
    Co-evolution of two coupled quasispecies is studied, motivated by the competition between viral evolution and adapting immune response. In this co-adaptive model, besides the classical error catastrophe for high virus mutation rates, a second ``adaptation-'' catastrophe occurs, when virus mutation rates are too small to escape immune attack. Maximizing both regimes of viral error catastrophes is a possible strategy for an optimal immune response, reducing the range of allowed viral mutation rates to a minimum. From this requirement one obtains constraints on B-cell mutation rates and receptor lengths, yielding an estimate of somatic hypermutation rates in the germinal center in accordance with observation.Comment: 4 pages RevTeX including 2 figure
    corecore