1,937 research outputs found
Evidence of slippage breakdown for a superhydrophobic microchannel
© 2014 AIP Publishing LLC.A full characterization of the water flow past a silicon superhydrophobic surface with longitudinal micro-grooves enclosed in a microfluidic device is presented. Fluorescence microscopy images of the flow seeded with fluorescent passive tracers were digitally processed to measure both the velocity field and the position and shape of the liquid-air interfaces at the superhydrophobic surface. The simultaneous access to the meniscus and velocity profiles allows us to put under a strict test the no-shear boundary condition at the liquid-air interface. Surprisingly, our measurements show that air pockets in the surface cavities can sustain non-zero interfacial shear stresses, thereby hampering the friction reduction capabilities of the surface. The effects of the meniscus position and shape as well as of the liquid-air interfacial friction on the surface performances are separately assessed and quantified
Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations
We investigate the behavior of the slip length in Newtonian liquids subject
to planar shear bounded by substrates with mixed boundary conditions. The upper
wall, consisting of a homogenous surface of finite or vanishing slip, moves at
a constant speed parallel to a lower stationary wall, whose surface is
patterned with an array of stripes representing alternating regions of no-shear
and finite or no-slip. Velocity fields and effective slip lengths are computed
both from molecular dynamics (MD) simulations and solution of the Stokes
equation for flow configurations either parallel or perpendicular to the
stripes. Excellent agreement between the hydrodynamic and MD results is
obtained when the normalized width of the slip regions, , where is the (fluid) molecular diameter characterizing the
Lennard-Jones interaction. In this regime, the effective slip length increases
monotonically with to a saturation value. For and transverse flow configurations, the non-uniform interaction
potential at the lower wall constitutes a rough surface whose molecular scale
corrugations strongly reduce the effective slip length below the hydrodynamic
results. The translational symmetry for longitudinal flow eliminates the
influence of molecular scale roughness; however, the reduced molecular ordering
above the wetting regions of finite slip for small values of
increases the value of the effective slip length far above the hydrodynamic
predictions. The strong inverse correlation between the effective slip length
and the liquid structure factor representative of the first fluid layer near
the patterned wall illustrates the influence of molecular ordering effects on
slip in non-inertial flows.Comment: 12 pages, 10 figures Web reference added for animations:
http://www.egr.msu.edu/~priezjev/bubble/bubble.htm
Two-dimensional conical dispersion in ZrTe5 evidenced by optical spectroscopy
Zirconium pentatelluride was recently reported to be a 3D Dirac semimetal,
with a single conical band, located at the center of the Brillouin zone. The
cone's lack of protection by the lattice symmetry immediately sparked vast
discussions about the size and topological/trivial nature of a possible gap
opening. Here we report on a combined optical and transport study of ZrTe5,
which reveals an alternative view of electronic bands in this material. We
conclude that the dispersion is approximately linear only in the a-c plane,
while remaining relatively flat and parabolic in the third direction (along the
b axis). Therefore, the electronic states in ZrTe5 cannot be described using
the model of 3D Dirac massless electrons, even when staying at energies well
above the band gap 6 meV found in our experiments at low temperatures.Comment: Physical Review Letters 122, 217402 (2019). Corrected acknowledgment
Exploring the volatile composition of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON) with ALMA
Comets formed in the outer and cold parts of the disk which eventually
evolved into our Solar System. Assuming that the comets have undergone no major
processing, studying their composition provides insight in the pristine
composition of the Solar Nebula. We derive production rates for a number of
volatile coma species and explore how molecular line ratios can help constrain
the uncertainties of these rates. We analyse observations obtained with the
Atacama Large Millimetre/Submillimetre Array of the volatile composition of the
comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON) at heliocentric
distances of ~1.45 AU and ~0.56 AU, respectively. Assuming a Haser profile with
constant outflow velocity, we model the line intensity of each transition using
a 3D radiative transfer code and derive molecular production rates and parent
scale lengths. We report the first detection of CS in comet ISON obtained with
the ALMA array and derive a parent scale length for CS of ~200 km. Due to the
high spatial resolution of ALMA, resulting in a synthesised beam with a size
slightly smaller than the derived parent scale length, we are able to
tentatively identify CS as a daughter species, i.e., a species produced in the
coma and/or sublimated from icy grains, rather than a parent species. In
addition we report the detection of several CH3OH transitions and confirm the
previously reported detections of HCN, HNC and H2CO as well as dust in the coma
of each comet, and report 3sigma upper limits for HCO+. We derive molecular
production rates relative to water of 0.2% for CS, 0.06-0.1% for HCN,
0.003-0.05% for HNC, 0.1-0.2% for H2CO and 0.5-1.0% for CH3OH, and show that
the modelling uncertainties due to unknown collision rates and kinematic
temperatures are modest and can be mitigated by available observations of
different transitions of HCN.Comment: 10 pages, 4 figures, 2 tables. Accepted for publication in A&
Nanoscale fluid flows in the vicinity of patterned surfaces
Molecular dynamics simulations of dense and rarefied fluids comprising small
chain molecules in chemically patterned nano-channels predict a novel switching
from Poiseuille to plug flow along the channel. We also demonstrate behavior
akin to the lotus effect for a nanodrop on a chemically patterned substrate.
Our results show that one can control and exploit the behavior of fluids at the
nanoscale using chemical patterning.Comment: Phys. Rev. Lett. in pres
Drainage of a nanoconfined simple fluid: rate effects on squeeze-out dynamics
We investigate the effect of loading rate on drainage in molecularly thin
films of a simple fluid made of quasi-spherical molecules
(octamethylcyclotetrasiloxane, OMCTS). We find that (i) rapidly confined OMCTS
retains its tendency to organize into layers parallel to the confining
surfaces, and (ii) flow resistance in such layered films can be described by
bulklike viscous forces if one accounts for the existence of one monolayer
immobilized on each surfaces. The latter result is fully consistent with the
recent work of Becker and Mugele, who reached a similar conclusion by analyzing
the dynamics of squeeze-out fronts in OMCTS [T. Becker and F. Mugele, Phys.
Rev. Lett. {\bf 91} 166104(2003)]. Furthermore, we show that the confinement
rate controls the nature of the thinning transitions: layer-by-layer expulsion
of molecules in metastable, slowly confined films proceeds by a
nucleation/growth mechanism, whereas deeply and rapidly quenched films are
unstable and undergo thinning transitions akin to spinodal decomposition
Dynamic surface decoupling in a sheared polymer melt
We propose that several mechanisms contribute to friction in a polymer melt
adsorbed at a structured surface. The first one is the well known
disentanglement of bulk polymer chains from the surface layer. However, if the
surface is ideal at the atomic scale, the adsorbed parts of polymer chains can
move along the equipotential lines of the surface potential. This gives rise to
a strong slippage of the melt. For high shear rates chains partially desorb.
However, the friction force on adsorbed chains increases, resulting in
quasi-stick boundary conditions. We propose that the adsorbed layers can be
efficiently used to adjust the friction force between the polymer melt and the
surface
Equilibrium Simulation of the Slip Coefficient in Nanoscale Pores
Accurate prediction of interfacial slip in nanoscale channels is required by
many microfluidic applications. Existing hydrodynamic solutions based on
Maxwellian boundary conditions include an empirical parameter that depends on
material properties and pore dimensions. This paper presents a derivation of a
new expression for the slip coefficient that is not based on the assumptions
concerning the details of solid-fluid collisions and whose parameters are
obtainable from \textit{equilibrium} simulation. The results for the slip
coefficient and flow rates are in good agreement with non-equilibrium molecular
dynamics simulation.Comment: 11 pages, 4 figures, submitted to Phys Rev Let
An integrated study of microstructural, geochemical, and seismic properties of the lithospheric mantle above the Kerguelen plume (Indian Ocean)
International audiencePeridotite xenoliths brought up to the surface by the volcanism of the Kerguelen Islands represent a mantle that has been affected by a high degree of partial melting followed by intense melt percolation above the Kerguelen plume. These xenoliths are therefore particularly suitable to investigate effects of melt-rock interaction on crystallographic fabrics (lattice-preferred orientation (LPO)) of peridotite minerals and on the LPO-induced seismic properties of peridotites above a mantle plume. We have studied a suite of 16 ultramafic samples representative of different degrees of partial melting and magma-rock interaction among which the protogranular harzburgites are the least metasomatised xenoliths and dunites are the ultimate stage of metasomatism. Olivine LPO is characterized by high concentration of [010] axes perpendicular to the foliation and [100] axes close to the lineation or distributed in the foliation plane in harzburgites, whereas the high concentration of [100] axes is parallel to the lineation and [010] axes is perpendicular to the assumed foliation in dunites. Olivine LPO in harzburgites is interpreted as being due to a deformation regime in axial compression or transpression. The fabric strength of olivine decreases progressively from protogranular to poikilitic harzburgites and finally to dunites, for which it remains nevertheless significant (J index 3.8). Seismic properties calculated from LPO of minerals indicate that metasomatism at higher melt/rock ratio lowers the P wave velocities. The most significant difference between harzburgites and dunites corresponds to the distribution of S wave anisotropy. Harzburgites display the maximum of anisotropy within the foliation plane and the minimum of anisotropy perpendicular to the foliation plane, whereas the lowest anisotropy is parallel to the lineation for dunites. These modifications of seismic properties as a result of metasomatic processes may induce seismic heterogeneities in the mantle above the Kerguelen plume. In addition, assuming a lithospheric mantle primarily harzburgitic and structured with a horizontal foliation, the seismic properties calculated for the Kerguelen xenoliths reconcile the rather high anisotropy evidenced by the horizontally propagating surface waves with the apparent isotropy revealed by the absence of splitting of vertically propagating teleseismic SKS waves recorded by the GEOSCOPE Kerguelen station
- …