18 research outputs found

    Adenosine Deaminase Acting on RNA-1 (ADAR1) Inhibits HIV-1 Replication in Human Alveolar Macrophages

    Get PDF
    While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL) of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1) in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM) but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro . Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages

    The PKR activator, PACT, becomes a PKR inhibitor during HIV-1 replication

    No full text
    Background: HIV-1 translation is modulated by the activation of the interferon (IFN)-inducible Protein Kinase RNA-activated (PKR). PKR phosphorylates its downstream targets, including the alpha subunit of the eukaryotic translation Initiation Factor 2 (eIF2α), which decreases viral replication. The PKR Activator (PACT) is known to activate PKR after a cellular stress. In lymphocytic cell lines, HIV-1 activates PKR only transiently and not when cells replicate the virus at high levels. The regulation of this activation is due to a combination of viral and cellular factors that have been only partially identified. Results: PKR is transiently induced and activated in peripheral blood mononuclear cells after HIV-1 infection. The addition of IFN reduces viral replication, and induces both the production and phosphorylation of PKR. In lymphocytic Jurkat cells infected by HIV-1, a multiprotein complex around PKR contains the double-stranded RNA binding proteins (dsRBPs), adenosine deaminase acting on RNA (ADAR)1 and PACT. In HEK 293T cells transfected with an HIV-1 molecular clone, PACT unexpectedly inhibited PKR and eIF2α phosphorylation and increased HIV-1 protein expression and virion production in the presence of either endogenous PKR alone or overexpressed PKR. The comparison between different dsRBPs showed that ADAR1, TAR RNA Binding Protein (TRBP) and PACT inhibit PKR and eIF2α phosphorylation in HIV-infected cells, whereas Staufen1 did not. Individual or a combination of short hairpin RNAs against PACT or ADAR1 decreased HIV-1 protein expression. In the astrocytic cell line U251MG, which weakly expresses TRBP, PACT mediated an increased HIV-1 protein expression and a decreased PKR phosphorylation. In these cells, a truncated PACT, which constitutively activates PKR in non-infected cells showed no activity on either PKR or HIV-1 protein expression. Finally, PACT and ADAR1 interact with each other in the absence of RNAs. Conclusion: In contrast to its previously described activity, PACT contributes to PKR dephosphorylation during HIV-1 replication. This activity is in addition to its heterodimer formation with TRBP and could be due to its binding to ADAR1. HIV-1 has evolved to replicate in cells with high levels of TRBP, to induce the expression of ADAR1 and to change the function of PACT for PKR inhibition and increased replication.</p

    The PKR activator, PACT, becomes a PKR inhibitor during HIV-1 replication

    Get PDF
    Background: HIV-1 translation is modulated by the activation of the interferon (IFN)-inducible Protein Kinase RNA-activated (PKR). PKR phosphorylates its downstream targets, including the alpha subunit of the eukaryotic translation Initiation Factor 2 (eIF2α), which decreases viral replication. The PKR Activator (PACT) is known to activate PKR after a cellular stress. In lymphocytic cell lines, HIV-1 activates PKR only transiently and not when cells replicate the virus at high levels. The regulation of this activation is due to a combination of viral and cellular factors that have been only partially identified. Results: PKR is transiently induced and activated in peripheral blood mononuclear cells after HIV-1 infection. The addition of IFN reduces viral replication, and induces both the production and phosphorylation of PKR. In lymphocytic Jurkat cells infected by HIV-1, a multiprotein complex around PKR contains the double-stranded RNA binding proteins (dsRBPs), adenosine deaminase acting on RNA (ADAR)1 and PACT. In HEK 293T cells transfected with an HIV-1 molecular clone, PACT unexpectedly inhibited PKR and eIF2α phosphorylation and increased HIV-1 protein expression and virion production in the presence of either endogenous PKR alone or overexpressed PKR. The comparison between different dsRBPs showed that ADAR1, TAR RNA Binding Protein (TRBP) and PACT inhibit PKR and eIF2α phosphorylation in HIV-infected cells, whereas Staufen1 did not. Individual or a combination of short hairpin RNAs against PACT or ADAR1 decreased HIV-1 protein expression. In the astrocytic cell line U251MG, which weakly expresses TRBP, PACT mediated an increased HIV-1 protein expression and a decreased PKR phosphorylation. In these cells, a truncated PACT, which constitutively activates PKR in non-infected cells showed no activity on either PKR or HIV-1 protein expression. Finally, PACT and ADAR1 interact with each other in the absence of RNAs. Conclusion: In contrast to its previously described activity, PACT contributes to PKR dephosphorylation during HIV-1 replication. This activity is in addition to its heterodimer formation with TRBP and could be due to its binding to ADAR1. HIV-1 has evolved to replicate in cells with high levels of TRBP, to induce the expression of ADAR1 and to change the function of PACT for PKR inhibition and increased replication.</p
    corecore