5,850 research outputs found

    Open vs Closed Access Femtocells in the Uplink

    Full text link
    Femtocells are assuming an increasingly important role in the coverage and capacity of cellular networks. In contrast to existing cellular systems, femtocells are end-user deployed and controlled, randomly located, and rely on third party backhaul (e.g. DSL or cable modem). Femtocells can be configured to be either open access or closed access. Open access allows an arbitrary nearby cellular user to use the femtocell, whereas closed access restricts the use of the femtocell to users explicitly approved by the owner. Seemingly, the network operator would prefer an open access deployment since this provides an inexpensive way to expand their network capabilities, whereas the femtocell owner would prefer closed access, in order to keep the femtocell's capacity and backhaul to himself. We show mathematically and through simulations that the reality is more complicated for both parties, and that the best approach depends heavily on whether the multiple access scheme is orthogonal (TDMA or OFDMA, per subband) or non-orthogonal (CDMA). In a TDMA/OFDMA network, closed-access is typically preferable at high user densities, whereas in CDMA, open access can provide gains of more than 200% for the home user by reducing the near-far problem experienced by the femtocell. The results of this paper suggest that the interests of the femtocell owner and the network operator are more compatible than typically believed, and that CDMA femtocells should be configured for open access whereas OFDMA or TDMA femtocells should adapt to the cellular user density.Comment: 21 pages, 8 figures, 2 tables, submitted to IEEE Trans. on Wireless Communication

    On the Entropy Function and the Attractor Mechanism for Spherically Symmetric Extremal Black Holes

    Full text link
    In this paper we elaborate on the relation between the entropy formula of Wald and the "entropy function" method proposed by A. Sen. For spherically symmetric extremal black holes, it is shown that the expression of extremal black hole entropy given by A. Sen can be derived from the general entropy definition of Wald, without help of the treatment of rescaling the AdS_2 part of near horizon geometry of extremal black holes. In our procedure, we only require that the surface gravity approaches to zero, and it is easy to understand the Legendre transformation of f, the integration of Lagrangian density on the horizon, with respect to the electric charges. Since the Noether charge form can be defined in an "off-shell" form, we define a corresponding entropy function, with which one can discuss the attractor mechanism for extremal black holes with scalar fields.Comment: v3: Revtex4, 19 pages, discussion added, mistakes corrected, final version; to appear in Phys. Rev.

    Microlensing in phase space II: Correlations analysis

    Full text link
    Applications of the phase space approach to the calculation of the microlensing autocorrelation function are presented. The continuous propagation equation for a random star field with a Gaussian velocity distribution is solved in the leading non-trivial approximation using the perturbation technique. It is shown that microlensing modulations can be important in the interpretation of optical and shorter-wavelength light curves of pulsars, power spectra of active galactic nuclei and coherence estimates for quasi-periodic oscillations of dwarf novae and low-mass X-ray binaries. Extra scatter in the brightness of type Ia supernovae due to gravitational microlensing is shown to be of order up to 0.2 stellar magnitudes depending on the extent of the light curves.Comment: Accepted for publication in MNRAS. 17 pages, 8 figures. The first part of this little series is available at http://www.arxiv.org/abs/astro-ph/0604302 . Replaced to add a link to the first par

    Microlensing in phase space I: Continuous propagation of variability moments

    Full text link
    A method to calculate the statistical properties of microlensing light curves is developed. The approach follows works by Deguchi & Watson, Seitz & Schneider and Neindorf, attempting to clarify the ideas involved and techniques used in the calculations. The method is then modified to include scattering by multiple lensing planes along the line of sight and transition to a continuous limit of this treatment for average quantities is performed leading to a Fokker-Planck type equation. The equation is solved for a particular model of the random star field and microlensing effect on the flux temporal variability is extracted. Applications in astrophysically relevant situations are discussed.Comment: Accepted for publication in MNRAS. 15 pages, 4 figures. The second part of this little series is available at http://www.arxiv.org/abs/astro-ph/060419

    Homoclinic Orbits around Spinning Black Holes I: Exact Solution for the Kerr Separatrix

    Full text link
    Under the dissipative effects of gravitational radiation, black hole binaries will transition from an inspiral to a plunge. The separatrix between bound and plunging orbits features prominently in the transition. For equatorial Kerr orbits, we show that the separatrix is a homoclinic orbit in one-to-one correspondence with an energetically-bound, unstable circular orbit. After providing a definition of homoclinic orbits, we exploit their correspondence with circular orbits and derive exact solutions for them. This paper focuses on homoclinic behavior in physical space, while in a companion paper we paint the complementary phase space portrait. The exact results for the Kerr separatrix could be useful for analytic or numerical studies of the transition from inspiral to plunge.Comment: 21 pages, some figure

    On the stability of naked singularities

    Full text link
    We study the linearised stability of the nakedly singular negative mass Schwarzschild solution against gravitational perturbations. There is a one parameter family of possible boundary conditions at the singularity. We give a precise criterion for stability depending on the boundary condition. We show that one particular boundary condition is physically preferred and show that the spacetime is stable with this boundary condition.Comment: 20 pages. 5 figure

    Colliding Plane Impulsive Gravitational Waves

    Full text link
    When two non-interacting plane impulsive gravitational waves undergo a head-on collision, the vacuum interaction region between the waves after the collision contains backscattered gravitational radiation from both waves. The two systems of backscattered waves have each got a family of rays (null geodesics) associated with them. We demonstrate that if it is assumed that a parameter exists along each of these families of rays such that the modulus of the complex shear of each is equal then Einstein's vacuum field equations, with the appropriate boundary conditions, can be integrated systematically to reveal the well-known solutions in the interaction region. In so doing the mystery behind the origin of such solutions is removed. With the use of the field equations it is suggested that the assumption leading to their integration may be interpreted physically as implying that the energy densities of the two backscattered radiation fields are equal. With the use of different boundary conditions this approach can lead to new collision solutions.Comment: 21 pages, LaTeX2
    • …
    corecore